首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67–72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil microbes, may therefore be a useful model system to investigate both microbial and viral ecology.  相似文献   

2.
Mode of preservation and method of recovery strongly influences our understanding of the life habits of extinct organisms. Bradoriid arthropods were abundant, and diverse members of early Cambrian ecosystems and most life reconstructions display these animals with the two shields of the carapace open in a ‘butterfly’ configuration. This favoured reconstruction is largely based on the abundance of ‘crack‐out’ specimens preserved in this position (e.g. Kunmingella from the early Cambrian of China). In contrast, large collections of acid processed bradoriids from the Arrowie Basin of South Australia (Cambrian Stage 3) are preserved with a narrow gape at the ventral margin or completely closed with the carapace folded along the dorsal midline. The relative abundance of conjoined, closed (or partially closed) specimens from the lower Cambrian Hawker Group succession suggests that at least some bradoriid taxa were capable of withdrawing appendages and tightly closing the shields, challenging the common view that the majority of bradoriids usually held their carapaces open in a ‘butterfly’ configuration during life. New data show that layers of the bradoriid carapace are continuous through the dorsal fold with no evidence for complex articulating structures as in ostracod hinges. The relatively pliable, sclerotized or lightly mineralized calcium phosphate composition of the carapace and the simple, flexible dorsal fold facilitated opening and closing of the shields. Despite not being closely related, ostracods share close biomechanical and ecological similarities with bradoriids. The evolution of more complex articulating hinge structures – together with well‐developed musculature – in ostracods during the Early Ordovician, may have provided more efficient means for shield articulation and movement, thus promoting the ecological success of ostracods throughout the Phanerozoic.  相似文献   

3.
Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity.  相似文献   

4.
Modern microbial mats are potential analogues of some of Earth''s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.  相似文献   

5.
松辽盆地嫩江组一段富含介形类化石,是系统研究Santonian期陆相介形类的理想层位。论文对中央坳陷区D80井嫩一段的介形类化石进行了系统的分类、生物地层和壳体特征分析。鉴定出介形类化石11属30种,划分出6个介形类化石带,并与前人的研究结果进行了对比;描述了该段介形类化石的壳体结构,共识别出4种壳饰类型,8种壳形结构,基于介形类壳体特征和其他证据,初步探讨了该时期湖盆湖平面的变化特征,显示出嫩一段时期松辽湖盆湖平面经历了由深逐渐变浅的过程。  相似文献   

6.
The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ(13) C(TOC) ) and nitrogen (δ(15) N) isotopes as well as by constructing and analyzing 16S rRNA gene libraries. Depending on their position on the littoral gradient, two types of mats were identified, which showed distinct differences regarding the structure, development and composition of the microbial community. Intertidal microbial mats showed a low species diversity with filamentous non-heterocystous Cyanobacteria providing the main mat structure. In contrast, supratidal microbial mats showed a distinct vertical zonation and a high degree of species diversity. Morphotypes of non-heterocystous Cyanobacteria were recognized as the main structural component in these mats. In addition, unicellular Cyanobacteria were frequently observed, whereas filamentous heterocystous Cyanobacteria occurred only in low numbers. Besides the apparent visual dominance of cyanobacterial morphotpyes, 16S rRNA gene libraries indicated that both microbial mat types also included members of the Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides group as well as diatoms. Bulk δ(15) N isotopes of the microbial mats ranged from +6.1‰ in the lower intertidal to -1.2‰ in the supratidal zone, indicating a shift from predominantly nitrate utilization to nitrogen fixation along the littoral gradient. This conclusion was supported by the presence of heterocyst glycolipids, representing lipid biomarkers for nitrogen-fixing heterocystous Cyanobacteria, in supratidal but not in intertidal microbial mats. The availability of combined nitrogen species might thus be a key factor in controlling and regulating the distribution of the diazotrophic microbial community of Schiermonnikoog.  相似文献   

7.
Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic community associated with bloom events. To address these issues, we examined the bloom-associated microbial communities in single samples from Lake Erie (North America), Lake Tai (Taihu, China), and Grand Lakes St. Marys (OH, USA) using comparative metagenomics. Together the Cyanobacteria and Proteobacteria comprised >90% of each bloom bacterial community sample, although the dominant phylum varied between systems. Relative to the existing Microcystis aeruginosa NIES 843 genome, sequences from Lake Erie and Taihu revealed a number of metagenomic islands that were absent in the environmental samples. Moreover, despite variation in the phylogenetic assignments of bloom-associated organisms, the functional potential of bloom members remained relatively constant between systems. This pattern was particularly noticeable in the genomic contribution of nitrogen assimilation genes. In Taihu, the genetic elements associated with the assimilation and metabolism of nitrogen were predominantly associated with Proteobacteria, while these functions in the North American lakes were primarily contributed to by the Cyanobacteria. Our observations build on an emerging body of metagenomic surveys describing the functional potential of microbial communities as more highly conserved than that of their phylogenetic makeup within natural systems.  相似文献   

8.
Cyanobacteria are a diverse group of Gram-negative prokaryotes that perform oxygenic photosynthesis. Cyanobacteria have been used for research on photosynthesis and have attracted attention as a platform for biomaterial/biofuel production. Cyanobacteria are also present in almost all habitats on Earth and have extensive impacts on global ecosystems. Given their biological, economical, and ecological importance, the number of high-quality genome sequences for Cyanobacteria strains is limited. Here, we performed genome sequencing of Cyanobacteria strains in the National Institute for Environmental Studies microbial culture collection in Japan. We sequenced 28 strains that can form a heterocyst, a morphologically distinct cell that is specialized for fixing nitrogen, and 3 non-heterocystous strains. Using Illumina sequencing of paired-end and mate-pair libraries with in silico finishing, we constructed highly contiguous assemblies. We determined the phylogenetic relationship of the sequenced genome assemblies and found potential difficulties in the classification of certain heterocystous clades based on morphological observation. We also revealed a bias on the sequenced strains by the phylogenetic analysis of the 16S rRNA gene including unsequenced strains. Genome sequencing of Cyanobacteria strains deposited in worldwide culture collections will contribute to understanding the enormous genetic and phenotypic diversity within the phylum Cyanobacteria.  相似文献   

9.
An exceptionally preserved new ostracod crustacean from the Silurian of Herefordshire, England, preserves eggs and possible juveniles within its carapace, providing an unequivocal and unique view of parental brood care in the invertebrate fossil record. The female fossil is assigned to a new family and superfamily of myodocopids based on its soft-part anatomy. It demonstrates a remarkably conserved egg-brooding reproductive strategy within these ostracods over 425 Myr. The soft-tissue anatomy urges extreme caution in classifying 'straight-hinged' Palaeozoic ostracods based on the carapace alone and fundamentally questions the nature of the shell-based Palaeozoic ostracod record.  相似文献   

10.
Gengo Tanaka 《Hydrobiologia》2005,538(1-3):231-242
The naupliar eye of podocopid ostracods is a useful character for considering evolution in photic environments. Based on external morphologies and histological observations, naupliar eyes are here categorized into six types. The fossil record demonstrates that the major evolutionary changes in podocopid naupliar eyes occured after the Ordovician. Eye types 1 and 2 are not joined to the carapace by the hypodermal cells, and these two types are found in Palaeozoic ostracods. Eye type 3, 4, 5 and 6 are extended on eye stalks, tightly joined to the carapace by the hypodermal cells, and use the carapace as the refractive cuticle lens. Eye type 3 appeared in the Permian, and eye types 4, 5 and 6 appeared in the Early Jurassic. The design of the podocopid naupliar eye diversified in the Early Jurassic.  相似文献   

11.
While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.  相似文献   

12.
The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.  相似文献   

13.
A general and practical understanding of the processes that drive microbiome assembly and structure are paramount to understanding organismal biology, health, and evolution. In this study of stream-dwelling crayfish, we conceptualized colonization of microbial symbionts as a series of ecological filters that operate at the environment, host, and host microsite levels, and identified key ecological processes at each level. A survey of Cambarus sciotensis in western Virginia, USA, showed that the local environment and host microsites interact to create complex patterns of microbial diversity and composition. An in situ experiment confirmed a prevailing effect of host microsite on microbial composition, and also showed that an ectosymbiotic worm (Annelida; Branchiobdellida) which feeds on biofilms and other symbionts had significant effects on microbial composition of the host carapace, but not gills. Bacterial communities of the carapace were taxonomically rich and even, and correlated with microbial communities of the ambient environment. Conversely, communities on gills were less diverse and dominated by two taxa with potential functional significance: Comamonadaceae and Chitinophagaceae. The bacterial communities of the gills appear to be tightly coupled to host biology, and those of the carapace are mostly determined by environmental context. Our work provides the first characterization of the crayfish microbiome and shows how multi-scale and experimental studies of symbiont community assembly provide valuable insights into how the animal microbiome is structured under conditions of natural complexity. Furthermore, this study demonstrates that metazoan symbiont taxa, i.e., the branchiobdellidans, can alter microbiome assembly and structure.  相似文献   

14.
The bacterial, archaeal and eukaryotic populations of nonlithifying mats with pustular and smooth morphology from Hamelin Pool, Shark Bay were characterised using small subunit rRNA gene analysis and microbial isolation. A highly diverse bacterial population was detected for each mat, with 16S rDNA clones related to Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonas, Planctomycetes, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Verrucomicrobia and candidate division TM6 present in each mat. Spirochaetes were detected in the smooth mat only, whereas candidate division OP11 was only detected in the pustular mat. Targeting populations with specific primers revealed additional cyanobacterial diversity. The archaeal population of the pustular mat was comprised purely of Halobacteriales, whereas the smooth mat contained 16S rDNA clones from the Halobacteriales, two groups of Euryarchaea with no close characterised matches, and the Thaumarchaea. Nematodes and fungi were present in each mat type, with diatom 18S rDNA clones only obtained from the smooth mat, and tardigrade and microalgae clones only retrieved from the pustular mat. Cultured isolates belonged to the Firmicutes, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Halobacteriales. The mat populations were significantly more diverse than those previously reported for Hamelin Pool stromatolites, suggesting specific microbial populations may be associated with the nonlithifying and lithifying microbial communities of Hamelin Pool.  相似文献   

15.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

16.
甘肃玉门下沟地区早白垩世下沟组介形类   总被引:3,自引:1,他引:2  
甘肃玉门下沟地区下沟组介形类化石十分丰富,该地区下沟组介形类化石共计9属4亚属,21种,本文描述了其中4新种,即Cypridea(Cyamocypris)xiagouensissp.nov.,Cypridea(Cypridea)subunicostatasp.nov.,Stenestroemiasubpeculiarissp.nov.和Stenestroemiaxiagouensissp.nov.。该介形类化石组合尤以Cypridea最为繁盛,通过分析介形类属种的形态特征和化石组合特征并结合岩性特征,推断下沟组的地质时代为早白垩世巴列姆期;并认为下沟组为水动力较弱的淡水-微咸水河湖相沉积。  相似文献   

17.
Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups.  相似文献   

18.
19.
Lake Van harbors the largest known microbialites on Earth. The surface of these huge carbonate pinnacles is covered by coccoid cyanobacteria whereas their central axis is occupied by a channel through which neutral, relatively Ca-enriched, groundwater flows into highly alkaline (pH ~9.7) Ca-poor lake water. Previous microscopy observations showed the presence of aragonite globules composed by rounded nanostructures of uncertain origin that resemble similar bodies found in some meteorites. Here, we have carried out fine-scale mineralogical and microbial diversity analyses from surface and internal microbialite samples. Electron transmission microscopy revealed that the nanostructures correspond to rounded aragonite nanoprecipitates. A progressive mineralization of cells by the deposition of nanoprecipitates on their surface was observed from external towards internal microbialite areas. Molecular diversity studies based on 16S rDNA amplification revealed the presence of bacterial lineages affiliated to the Alpha-, Beta- and Gammaproteobacteria, the Cyanobacteria, the Cytophaga-Flexibacter-Bacteroides (CFB) group, the Actinobacteria and the Firmicutes. Cyanobacteria and CFB members were only detected in surface layers. The most abundant and diverse lineages were the Firmicutes (low GC Gram positives). To the exclusion of cyanobacteria, the closest cultivated members to the Lake Van phylotypes were most frequently alkaliphilic and/or heterotrophic bacteria able to degrade complex organics. These heterotrophic bacteria may play a crucial role in the formation of Lake Van microbialites by locally promoting carbonate precipitation.  相似文献   

20.
A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号