首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.  相似文献   

2.
Immunohistochemistry was used to identify the distribution of both APGWamide-like and RFamide-like peptides in the central nervous system (CNS) and ovary of the mature female giant freshwater prawn, Macrobrachium rosenbergii. APGWamide-like immunoreactivity (ALP-ir) was found only within the sinus gland (SG) of the eyestalk, in small- and medium-sized neurons of cluster 4, as well as their varicosed axons. RFamide-like immunoreactivity (RF-ir) was detected in neurons of all neuronal clusters of the eyestalk and CNS, except clusters 1 and 5 of the eyestalk, and dorsal clusters of the subesophageal, thoracic, and abdominal ganglia. The RF-ir was also found in all neuropils of the CNS and SG, except the lamina ganglionaris. These immunohistochemical locations of the APGWamide-like and RF-like peptides in the eyestalk indicate that these neuropeptides could modulate the release of the neurohormones in the sinus gland. The presence of RFamide-like peptides in the thoracic and abdominal ganglia suggests that it may act as a neurotransmitter which controls muscular contractions. In the ovary, RF-ir was found predominantly in late previtellogenic and early vitellogenic oocytes, and to a lesser degree in late vitellogenic oocytes. These RFs may be involved with oocyte development, but may also act with other neurohormones and/or neurotransmitters within the oocyte in an autocrine or paracrine manner.  相似文献   

3.
We investigated changes in serotonin (5-HT) and dopamine (DA) levels and in their distribution patterns in the central nervous system (CNS) and ovary during the ovarian maturation cycle in the Pacific white shrimp, Litopenaeus vannamei. The concentrations of these two neurotransmitters were determined by using high performance liquid chromatography with electrochemical detection. The 5-HT concentration exhibited a gradual increase in the brain and thoracic ganglia during early ovarian stages I, II, and III, reaching a maximum at the mature ovarian stage IV, whereas DA showed its highest concentration at ovarian stage II in the brain and thoracic ganglia and then declined to its lowest concentration at ovarian stage IV. In the ovaries, 5-HT was lowest at ovarian stage I and gradually increased to a peak at ovarian stage IV. Conversely, the concentration of DA was highest at ovarian stages I and II and lowest at ovarian stage IV. In the brain, 5-HT immunoreactivity (−ir) from stage IV and DA-ir from stage II were distributed extensively in neurons of clusters 6, 11, and 17, in fibers, and in the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic, and abdominal ganglia, both 5-HT-ir and DA-ir were detected in neuropils and surrounding neurons and fibers. 5-HT-ir and DA-ir were more intense in the thoracic ganglia than in other parts of the CNS. In the ovary, 5-HT-ir exhibited high intensity in late oocytes, whereas DA-ir was more intense in early oocytes. Thus, opposing changes occur in the levels of these two neurotransmitters and in their specific localizations in the CNS and ovary during ovarian maturation, indicating their important involvement in female reproduction.  相似文献   

4.
In the present study, we demonstrated the existence of GnRH-like peptides in the central nervous system (CNS) and ovary of the giant freshwater prawn, Macrobrachium rosenbergii using immunocytochemistry. The immunoreactivity (ir) of lamprey (l) GnRH-III was detected in the soma of medium-sized neurons located in neuronal cluster number 11 in the middle part of supraesophageal ganglion (deutocerebrum), whereas ir-octopus (oct) GnRH was observed in the soma of both medium-sized and large-sized neurons in thoracic ganglia, as well as in the fibers innervating the other medium-sized and large-sized neuronal cell bodies in the thoracic ganglia. In addition, ir-lGnRH-I was observed in the cytoplasm of late previtellogenic oocyte and early vitellogenic oocyte. These data suggest that M. rosenbergii contain at least three isoforms of GnRH: two GnRH isoforms closely related to lGnRH-III and octGnRH in the CNS, whereas another isoform, closely related to lGnRH-I, was localized in the ovary. This finding provides supporting data that ir-GnRH-like peptide(s) may exist in this decapod crustacean.  相似文献   

5.
Dopamine (DA), octopamine (OA) and serotonin (5-HT) are the key neurotransmitters that control gonadal development in decapod crustaceans. 5-HT stimulates, while DA and OA delay gonadal development in Macrobrachium rosenbergii. In the present study, we have further investigated the distribution patterns of DA and OA in the central nervous system (CNS) and ovary during various stages of the ovarian maturation cycle of this giant freshwater prawn. DA- and OA-immunoreactive neurons and fibers were distributed extensively in several regions of the brain, subesophageal ganglion (SEG), thoracic ganglia and abdominal ganglia. In the brain, the two neurotransmitters were present in neurons of clusters 6, 7, 11, 17, and nearby neuropil regions. In the SEG, thoracic ganglia and abdominal ganglia, immunoreactive neurons and fibers were found along the midline and in several neuronal clusters around each neuropil region. Staining for DA and OA was more intense in the thoracic ganglia than in other parts of the CNS. In the ovary, DA- and OA-immunoreactivities were present at high intensity in early oocytes. The presence of DA- and OA-immunoreactivities in neural ganglia as well as ovary suggests that DA and OA may also be involved in the reproductive process, particularly ovarian development and differentiation of oocytes in this species.  相似文献   

6.
Summary The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there wasm however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.  相似文献   

7.
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6–8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9–13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14–17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc1) and very intense in Oc2–Oc4. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17β (E2) and progesterone (P4) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.  相似文献   

8.
Anatomical study of neurons projecting to the retrocerebral complex of the adult blow fly, Protophormia terraenovae, was done by NiCl2 filling and immunocytochemistry. Retrograde filling through the cardiac-recurrent nerve labeled three groups of neurons in the brain/subesophageal ganglion: (1) paramedial clusters of the pars intercerebralis, (2) neurons in each pars lateralis, and (3) neurons in the subesophageal ganglion. The pars intercerebralis neurons send prominent axons into the median bundle and exit from the brain via the contralateral nervus corporis cardiaci. Based on the projection pattern, two types of the pars lateralis neurons can be distinguished: the most lateral pairs of neurons contralaterally extend through the posterior lateral tract and the remainder ipsilaterally extend through the posterior lateral tract. The neurons in the subesophageal ganglion run through the contralateral nervus corporis cardiaci. The dendritic arborization of the pars intercerebralis and pars lateralis neurons is restricted to the superior protocerebral neuropil and to the anterior neuropil of the subesophageal ganglion where the neurons in the subesophageal ganglion also project. Retrograde filling from the corpus allatum indicated that the pars lateralis neurons and a few pars intercerebralis neurons project to the corpus allatum, but that the neurons in the subesophageal ganglion do not. Orthograde filling from the pars intercerebralis and staining by paraldehyde-thionin/paraldehyde-fuchsin indicated that the pars intercerebralis neurons project primarily to the corpus cardiacum/hypocerebral ganglion complex. Immunostaining with a polyclonal antiserum against diapause hormone, a member of the FXPRLamide family, suggests that some of the subesophageal ganglion neurons contain FXPRLamide-like peptides.  相似文献   

9.
Beetles of the genus Melanophila are able to detect infrared radiation by using specialized sensilla in their metathoracic pit organs. We describe the afferent projections of the infrared-sensitive neurons in the central nervous system. The axons primarily terminate in the central neuropil of the fused second thoracic ganglia where they establish putative contacts with ascending interneurons. Only a few collaterals appear to be involved in local (uniganglionic) circuits. About half of the neurons send their axons further anterior to the prothoracic ganglion. A subset of these ascend to the subesophageal ganglion, and about 10% project to the brain. Anatomical similarities suggest that the infrared-sensitive neurons are derived from neurons supplying mechanosensory sensilla. The arborization pattern of the infrared afferents suggests that infrared information is processed and integrated upstream from the thoracic ganglia.  相似文献   

10.
Summary We used a polyclonal antiserum against histamine to map histaminelike immunoreactivity (HLI) in whole mounts of the segmental ganglia and stomatogastric ganglion of crayfish and lobster. Carbodiimide fixation permitted both HRP-conjugated and FITC-conjugated secondary antibodies to be used effectively to visualize HLI in these whole mounts. Two interneurons that send axons through the inferior ventricular nerve (ivn) and the stomatogastric nerve to the stomatogastric ganglion had strong HLI, both in crayfish and in lobster. These ivn interneurons were known from other evidence to be histaminergic. The neuropil of the stomatogastric ganglion in both crayfish and lobster contained brightly labeled terminals of axons that entered the ganglion from the stomatogastric nerve. No neuronal cell bodies in this ganglion had HLI. Each segmental ganglion contained at least one pair of neurons with HLI. Some neurons in the subesophageal ganglion and in each thoracic ganglion labeled very brightly. Axons of projection interneurons with strong HLI occurred in the dorsal lateral tracts of each segmental ganglion, and sent branches to the lateral neuropils and tract neuropils of each ganglion. All the labeled neurons were interneurons; no HLI was observed in peripheral nerves.  相似文献   

11.
We have used specific antisera against protein-conjugated -aminobutyric acid (GABA) and rat-brain glutamic acid decarboxylase (GAD) in immunocytochemical preparations to study the distribution of putatively GABAergic neurons in the fused thoracic ganglion of the crab Eriphia spinifrons. In the thoracic neuromeres, about 2000 neurons with somata arranged in clusters or located singly in the cell cortex exhibited both GABA-like and GAD-like immunoreactivity. In addition, more than a hundred cells showed only GABA-like immunoreactivity. Fibrous immunoreactive staining to GAD and GABA was distributed throughout the neuropil of the thoracic ganglion, and several fiber tracts contained immunoreactive processes. Sets of serially homologous neurons exhibited GABA-like and GAD-like immunoreactivity in the thoracic neuromeres. Especially prominent were one medial and four ventro-lateral clusters of somata, together with thirteen individually recognized cells in each neuromere. Six of these cells in the ventro-medial cell cortex may be the somata of inhibitory motoneurons. The leg nerves contained three immunoreactive fibers, corresponding to the previously described common inhibitory motoneuron and the two specific inhibitors. The results present further evidence for GABA being the neurotransmitter of all inhibitory leg motorneurons, and suggest its presence and role as a neurotransmitter in a considerable number of interneurons in the thoracic ganglion of the crab.  相似文献   

12.
The existence of progesterone receptors (PR) in the Scylla paramamosain (mud crab) was studied using immunological techniques. By Western blotting, PR with an apparent molecular weight of 70 kDa is identified in both the brain and the thoracic ganglion. By immunohistochemistry, PR immunoreactive neurons are detected mainly in the protocerebrum, the subesophageal ganglion and the leg ganglion. PR immunoreactivity is localized mainly in the nuclei of these neurons, while only a few neurons show such activities in their cytoplasm. Our results provide evidence that progesterone modulates the neuroendocrine system mainly via nucleus receptors.  相似文献   

13.
The distribution of corazonin in the central nervous system of the heteropteran insect Triatoma infestans was studied by immunohistochemistry. The presence of corazonin isoforms was investigated using MALDI-TOF mass spectrometry in samples containing the brain, the subesophageal ganglion, the corpora cardiaca-corpus allatum complex and the anterior part of the aorta. Several groups of immunopositive perikarya were detected in the brain, the subesophageal ganglion and the thoracic ganglia. Regarding the brain, three clusters were observed in the protocerebrum. One of these clusters was formed by somata located near the entrance of the ocellar nerves whose fibers supplied the aorta and the corpora cardiaca. The remaining groups of the protocerebrum were located in the lateral soma cortex and at the boundary of the protocerebrum with the optic lobe. The optic lobe housed immunoreactive somata in the medial soma layer of the lobula and at the level of the first optic chiasma. The neuropils of the deutocerebrum and the tritocerebrum were immunostained, but no immunoreactive perikarya were detected. In the subesophageal ganglion, immunostained somata were found in the soma layers of the mandibular and labial neuromeres, whereas in the mesothoracic ganglionic mass, they were observed in the mesothoracic, metathoracic and abdominal neuromeres. Immunostained neurites were also found in the esophageal wall. The distribution pattern of corazonin like immunoreactivity in the central nervous system of this species suggests that corazonin may act as a neurohormone. Mass spectrometric analysis revealed that [Arg7]-corazonin was the only isoform of the neuropeptide present in T. infestans tissue samples.  相似文献   

14.
The distribution of FMRFamide (FMRFa)-like immunoreactivity (LI) was studied in the brain and subesophageal ganglion of Triatoma infestans, the insect vector of Chagas disease. The neuropeptide displayed a widespread distribution with immunostained somata in the optic lobe, in the anterior, lateral, and posterior soma rinds of the protocerebrum, and around the antennal sensory and mechanosensory and motor neuropils of the deutocerebrum. FMRFa-immunoreactive profiles of the subesophageal ganglion were seen in the mandibular, maxillary, and labial neuromeres. Immunostained neurites were detected in the medulla and lobula of the optic lobe, the lateral protocerebral neuropil, the median bundle, the calyces and the stalk of the mushroom bodies, and the central body. In the deutocerebrum, the sensory glomeruli showed a higher density of immunoreactive processes than the mechanosensory and motor neuropil, whereas the neuropils of each neuromere of the subesophageal ganglion displayed a moderate density of immunoreactive neurites. Colocalization of FMRFa-LI and crustacean pigment-dispersing hormone-LI was found in perikarya of the proximal optic lobe, the lobula, the sensory deutocerebrum, and the labial neuromere of the subesophageal ganglion. The distribution pattern of small cardioactive peptide B (SCPB)-LI was also widespread, with immunolabeled somata surrounding every neuropil region of the brain and subesophageal ganglion, except for the optic lobe. FMRFa- and SCPB-LIs showed extensive colocalization in the brain of this triatomine species. The presence of immunolabeled perikarya displaying either FMRFa- or SCPB-LI confirmed that each antisera identified different peptide molecules. The distribution of FMRFa immunostaining in T. infestans raises the possibility that FMRFa plays a role in the regulation of circadian rhythmicity. The finding of immunolabeling in neurosecretory somata of the protocerebrum suggests that this neuropeptide may also act as a neurohormone.This work was sponsored by the Facultad de Ciencias Biomédicas, Universidad Austral. Part of this work was performed at the Division of Neurobiology, Arizona Research Laboratories (Tucson, Arizona) with the support of a Fulbright Research Award to B.P.S.  相似文献   

15.
There are numerous aldehyde fuchsin (AF)-positive, neurosecretory cells of medium size (A cells) and a small number of large, AF-negative neurons (B cells) in the cortical layer of the cerebral ganglion. In the subesophageal ganglion, symmetrical groups of AF-positive cells lie ventrally. The peroxidase--antiperoxidase (PAP) method was used for the immunocytochemical study of substance P and ACTH in these ganglia. In addition, the presence of L-enkephalin and alpha endorphin could be confirmed. Using rabbit antibodies to substance P we found small immunoreactive neurons among negative A and B cells in the cerebral ganglion. The processes of these immunoreactive cells could be traced to the subcortical synaptic neuropil. With antibodies to ACTH, activity was visible in perikarya similar in size to A neurons. A part of the nerve terminals of the synaptic zone, some of the B neurons and further several nerve cells of the subesophageal ganglion reacted positively. Successive demonstration of substance P and ACTH on the same section showed that the two materials occurred in different cell types. Using antiopsin antibody in an indirect immunocytochemical test we observed strong reaction in numerous medium-sized perikarya and in nerve fibres of the synaptic zone of the cerebral ganglion, further in some neurons of the subesophageal and abdominal ganglia. In contrast to this result, the photoreceptor cells of the prostomium and cerebral ganglion were negative. Presumably, substance P is present in a perikaryon type hitherto unrecognized while ACTH and antiopsin reactions seem to be located first of all in A cells.  相似文献   

16.
In insects, thoracic pattern generators are modulated by the two head ganglia, the supraesophageal ganglion (brain) and the subesophageal ganglion, which act as higher-order neuronal centers. To explore the contribution of each head ganglion to the initiation and maintenance of specific motor behaviors in cockroaches (Periplaneta americana), we performed specific lesions to remove descending inputs from either the brain or the subesophageal ganglion or both, and quantified the behavioral outcome with a battery of motor tasks. We show that ‘emergency’ behaviors, such as escape, flight, swimming or righting, are initiated at the thoracic level independently of descending inputs from the head ganglia. Yet, the head ganglia play a major role in maintaining these reflexively initiated behaviors. By separately removing each of the two head ganglia, we show that the brain excites flight behavior and inhibits walking-related behaviors, whereas the subesophageal ganglion exerts the opposite effects. Thus, control over specific motor behaviors in cockroaches is anatomically and functionally compartmentalized. We propose a comprehensive model in which the relative permissive versus inhibitory inputs descending from the two head ganglia, combined with thoracic afferent sensory inputs, select a specific thoracic motor pattern while preventing the others.  相似文献   

17.
Although the order Opiliones constitutes the third‐largest group of arachnids, this creature is still mysterious and has a rich unexplored field compared to what is known about insects and crustaceans. The order Opiliones is traditionally regarded as a close relative of mites, mainly because of morphological similarities in external body structure; however microstructural organization of the ganglionic neurons and nerves in the harvestman Leiobunum japonicum is quite similar to the central nervous system (CNS) in all extant arachnids. The CNS consists of a large neural cluster with paired appendicular nerves. The esophagus passes through the neural cluster and divides it into the upper supraesophageal ganglion (SpG) and the lower subesophageal ganglion (SbG). The dorsal part of the SpG has a quite condensed cell body compared with other parts of the CNS and has two main components, the protocerebrum and the cheliceral ganglion. The protocerebrum receives the optic nerves and has four main groups of neuropiles from the optic lobes, the superior central body, the lateral neuropils (corpora pedunculata) and the inferior neuropil. However, a pair of pedipalpal and four pairs of appendage nerves including several pairs of abdominal nerves arise from the nerve masses of the SbG.  相似文献   

18.
ABSTRACT Central nervous system (CNS) of arachnids is still mysterious and has a rich unexplored field compare to what is known in insects or crustaceans. The CNS of the spider, Achaearanea tepidariorum, consists of a dorsal brain or supraesophageal ganglion and circumesophageal connectives joining it to the subesophageal mass. As the segmentation of the arachnid brain is still under discussion, we classify the brain as a protocerebral and tritocerebral ganglion depending on the evidences which generally accepted. The subesophageal nerve mass underneath the brain is the foremost part of the ventral nerve cord. All of this nerve mass is totally fused together, and forming subesophageal ganglia in this spider. In the brain, the nerve cells are packed in the frontal, dorsal and lateral areas, but are not absent from the posterior and ventral regions. In addition, the nerve cells of the subesophageal and abdominal ganglia are only restricted to the ventral and ventolateral regions. The CNS of the spider, Achaearanea tepidariorum is similar in feature to the Family Araneidae.  相似文献   

19.
Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.  相似文献   

20.
Summary Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号