首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chirality》2017,29(5):178-192
The program CDSpecTech was developed to facilitate the analysis of chiroptical spectra, which include the following: vibrational circular dichroism (VCD) and corresponding vibrational absorption (VA) spectra; vibrational Raman optical activity (VROA) and corresponding vibrational Raman spectra; electronic circular dichroism (ECD) and corresponding electronic absorption (EA) spectra. In addition, the program allows for generating optical rotatory dispersion (ORD) as the Kramers–Kronig transform of ECD spectra. The simulation of theoretical spectra from transition strengths can be achieved using different bandshape profiles. The experimental and simulated theoretical spectra can be visually compared by displaying them together. A unique feature of CDSpecTech is performing spectral analysis using the ratio spectra; i.e., the dimensionless dissymmetry factor (DF) spectrum, which is the ratio of CD to absorption spectra, and the dimensionless circular intensity difference (CID) spectrum, which is the ratio of VROA to vibrational Raman spectra. The quantitative agreement between experimental and simulated theoretical spectra can also be assessed from the numerical similarity overlap between them. Two different similarity overlap methods are available. The program uses a graphical user interface which allows for ease of use and facilitates the analysis. All these features make CDSpecTech a valuable tool for the analysis of chiroptical spectra. The program is freely available on the World Wide Web.  相似文献   

2.
The changes in optical activity that accompany and characterize the coil-helix and helix-coil transitions of agarose in aqueous solutions and gels have been investigated by combined quantitative analysis of data from vacuum ultraviolet circular dichroism (VUCD) and optical rotary dispersion (ORD). VUCD of agarose in the high-temperature coil state shows a single accessible Gaussian band centered at ~183 nm. In the helix state this band is blue-shifted by ~9 nm, and the intensity is increased by a factor of ~2.6. Spectra at intermediate temperatures can be fitted to within experimental error by linear combination of coil and helix spectra, the relative proportions required providing an index of the extent of conformational ordering. ORD spectra throughout the conformational transition have a common form and differ only in absolute magnitude. The temperature course of conformational ordering derived from ORD intensity is in close agreement with the values obtained from VUCD. In both the coil and helix states the accessible VUCD band is positive, while the overall ORD is negative, indicating strong negative CD activity at lower wavelength. The ORD contribution corresponding to the positive VUCD band was calculated by Kronig–Kramers transform, and it was subtracted from the total ORD to give the residual ORD from all other optically active transitions of the molecule. In both the coil and helix states, this residual ORD could be fitted to within experimental error by a single Gaussian CD band at ~149 nm. A negative band at this wavelength has been reported previously for agarose films, but the observed intensity, relative to that of the lower energy positive band, is substantially smaller than the fitted value under hydrated conditions. In both the coil and helix states the total optical activity of agarose, characterized by observed ORD spectra, can be matched to within experimental error by Kronig-Kramers transform of the 149-nm negative band and the smaller positive band at higher wavelength, with no necessary involvement of deeper-lying transitions. The significance of this conclusion for fundamental understanding of carbohydrate optical activity is discussed.  相似文献   

3.
The electronic circular dichroism (ECD) spectra of naproxen enantiomers were studied as a function of solvents using experimental (circular dichroism) and theoretical (time‐dependent density functional theory) approaches. The (R)‐ and (S)‐naproxen enantiomers presented an unusual inversion in their ECD signals in the presence of ethanol and water when compared with polar aprotic solvents such as acetonitrile. From a practical point of view, these findings deserve great attention because these solvents are widely used for high‐performance liquid chromatography analysis in quality control of chiral pharmaceutical drugs. This is particularly relevant to naproxen because the (S)‐naproxen has anti‐inflammatory properties, whereas (R)‐naproxen is hepatotoxic. A time‐dependent density functional theory computer simulation was conducted to investigate the signal inversion using the solvation model based on density, a reparameterization of polarized continuum model. Electronic circular dichroism signals of conformers were calculated by computer simulation and their contribution to the combined spectra obtained according to Boltzmann weighting. It was found that the experimentally observed ECD signal inversion can be associated with the minor or major contribution of different conformers of naproxen.  相似文献   

4.
The UV absorption and electronic circular dichroism (ECD) spectra of (R)‐ and (S)‐nicotine and (S)‐nornicotine in aqueous solution were measured to a significantly lower wavelength range than previously reported, allowing the identification of four previously unobserved electronic transitions. The ECD spectra of the two enantiomers of nicotine were equal in magnitude and opposite in sign, while the UV absorption spectra were coincidental. In line with previous observations, (S)‐nicotine exhibited a negative cotton effect centered on 263 nm with vibronic structure (π–π1* transition) and a broad, positive ECD signal at around 240 nm associated with the n–π1* transition. As expected this band disappeared when the pyridyl aromatic moiety was protonated. Four further electronic transitions are reported between 215 and 180 nm; it is proposed the negative maxima around 206 nm is either an n–σ* transition or a charge transfer band resulting from the movement of charge from the pyrrolidyl N lone pair to the pyridyl π* orbital. The pyridyl π–π2* transition may be contained within the negative ECD signal envelope at around 200 nm. Another negative maximum at 188 nm is thought to be the pyridyl π–π3* transition, while the lowest wavelength end‐absorption and positive ECD may be associated with the π–π4* transition. The UV absorption spectra of (S)‐nornicotine was similar to that of (S)‐nicotine in the range 280–220 nm and acidification of the aqueous solution enhanced the absorption. The ECD signals of (S)‐nornicotine were considerably less intense compared to (S)‐nicotine and declined further on acidification; in the far UV region the ECD spectra diverge considerably. Chirality 25:288–293, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675–750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675– 710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated.  相似文献   

6.
The circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of a suspension of arbitrarily shaped optically active particles may be calculated by using the Rayleigh-Debye theory. Subject to restrictions on the size of the particles and the refractive index of the suspending medium the CD and ORD spectra of the suspension are the same as the intrinsic molecular spectra. The size of the particles can be comparable to or larger than the wavelength of the incident light provided that the optical properties of particles and medium are sufficiently similar. Therefore, it should be possible to experimentally reduce scattering artefacts in CD and ORD spectra of suspensions by suitably choosing a medium in which the particles are suspended.  相似文献   

7.
Ultraviolet absorption (UV) and electronic circular dichroism (ECD) spectra of enantiopure (Z)-8-methoxy-4-cyclooctenone (MCO) were measured in hexane to give a normal single UV absorption band at 298 nm, which is assigned to the carbonyl's pi*<--n transition. Unexpectedly, the ECD spectrum exhibited an apparent couplet pattern with vibrational fine structures. Obviously, the conventional CD exciton coupling mechanism cannot be applied to this bisignate CD signal observed for single-chromophoric MCO. Variable temperature-ECD and vibrational circular dichroism (VCD) spectral measurements, simultaneous UV and ECD spectral band resolution, and density functional theory (DFT) calculations of energy and structure revealed that this apparent CD couplet originates from a rather complicated spectral overlap of more than three conformers of MCO, two of which exhibit mirror-imaged ECD spectra at appreciably deviated wavelengths. In the simultaneous band-resolution analysis, the observed UV and ECD spectra were best fitted to four overlapping bands. Two major conformers were identified by comparing the experimental IR and VCD spectra with the simulated ones, and the other two by comparing the observed UV and ECD spectra with the theoretical ones obtained by time-dependent DFT calculations. It was shown that the combined use of experimental ECD and VCD spectra and theoretical DFT calculations can give a reasonable interpretation for the Cotton effects of the conformationally flexible molecule MCO.  相似文献   

8.
The CD spectra of twelve DNA restriction fragments ranging in size from 12 to 360 base pairs are reported. Since the sequences of these fragments are known, it is possible to calculate their CD spectra from a set of nearest neighbor contributions derived from a combination of synthetic polydeoxyribonucleotides. While the calculations lead to good agreement in the negative band at approximately 245 nm, they generally reproduce the positive band at approximately 270 nm only poorly. The experimentally observed positive band consists of two peaks centered around 270 and 285 nm. The comparison of calculated and measured spectra reveals that end effects lead to increased disagreement for fragments smaller than approximately 40 base pairs. The disagreement between calculated and measured spectra can be partially attributed to the fraction of next nearest neighbors in the DNAs, which are also in the spectral components. Thus, the sequence specific CD contributions in the long wavelength region of the spectra extend at least to next nearest neighbor nucleotides and may extend beyond.  相似文献   

9.
10.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

11.
Optical rotatory dispersion (ORD) spectra in 250 to 350 nm region were measured for preparations of five TMV-like viruses (TMV vulgare, HR and U2 strains of TMV dolihosenation mosaic virus and cucumber virus 4) and also for RNA and protein preparations of these viruses. The data obtained testify against the possibility that the double peak with maxima at 286 and 293 nm observed in ORD of all the five viruses is due to interaction of tryptophan residues in virus coat protein with the RNA of the virul particle. The spectra of intravirus RNA of the five viruses, calculated as the difference between ORD of the intact virus and of its coat protein, were found to differ significantly from each other and from ORD of free RNA. ORD spectra of hybrid viruses, reconstituted from RNA of one virus and coat protein of another, proved to be identical to the ORD of the virus, whose protein was used in reconstitution. We suppose that the difference in ORD of the intravirus RNA of the five viruses reflect differences of RNA-protein interactions in them.  相似文献   

12.
《Chirality》2017,29(11):670-676
The absolute configuration (AC) of an axially chiral sulfonate (aCSO), 3,5‐dimethyl‐2‐(naphthalen‐1‐yl)‐6‐(naphthalen‐1‐yl)benzenesulfonate (labeled as aCSO5), was investigated using optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) spectroscopies. All three methods led to the same conclusion and the AC of aCSO5 is reliably determined to be (−)‐(aR , aR ), or conversely (+)‐(aS , aS ).  相似文献   

13.
The absorbance spectra of visual pigments can be approximated with mathematical expressions using as single parameter the absorbance peak wavelength. A comparison of the formulae of Stavenga et al. in Vision Res 33:1011–1017 (1993) and Govardovskii et al. in Vis Neurosci 17:509–528 (2000) applied to a number of invertebrate rhodopsins reveals that both templates well describe the normalized α-band of rhodopsins with peak wavelength > 400 nm; the template spectra are virtually indistinguishable in an absorbance range of about three log units. The template formulae of Govardovskii et al. in Vis Neurosci 17:509–528 (2000) describe the rhodopsin spectra better for absorbances below 10−3. The template predicted spectra deviate in the ultraviolet wavelength range from each other as well as from measured spectra, preventing a definite conclusion about the spectral shape in the wavelength range <400 nm. The metarhodopsin spectra of blowfly and fruitfly R1-6 photoreceptors derived from measured data appear to be virtually identical. The established templates describe the spectral shape of fly metarhodopsin reasonably well. However, the best fitting template spectrum slightly deviates from the experimental spectra near the peak and in the long-wavelength tail. Improved formulae for fitting the fly metarhodopsin spectra are proposed.  相似文献   

14.
This study discusses the choice of different simplified models used in computations of electronic circular dichroism (ECD) spectra and other chiroptical characteristics used to determine the absolute configuration (AC) of the complex natural product sibiricumin A. Sections of molecules containing one chiral center with one near an aromatic group have large effects on the ECD spectra. Conversely, when the phenyl group is present on a substituent without a nonstereogenic center, removal of this section will have little effect on ECD spectra. However, these nonstereogenic‐center‐containing sections have large effects on calculated optical rotations (OR) values since the OR value is more sensitive to the geometries of sections in a molecule. In this study, the wrong AC of sibiricumin A was reassigned as (7R,8S,1'R,7'R,8'S)‐ 11 . Chirality 28:612–617, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
We present a new method based on optical null methods for simultaneously measuring the optical rotatory dispersion (ORD) and absorption spectra of chiral substances. The optical rotation angle at a specific wavelength can be obtained from the optical nulls of the Malus curves with and without the sample. We use the optical nulls of the two curves as benchmark points and the readings to the right of the benchmark points by a certain angular offset to eliminate the influence of the analyzer on the light intensity and obtain the absorbance of the chiral substance at a specific wavelength. The 4096 pixels of the line scan CCD can measure multiple wavelengths simultaneously so that continuous ORD and absorption spectra can be obtained. The experimental results show that the standard deviation of the specific optical rotation is 0.11 deg mL g−1 dm−1, the standard deviation of the maximum absorption wavelength is 0.45 nm, and that absorbance of the sample varies linearly with the concentration. This method is helpful for simplifying the experiment and has a profound influence on the analysis of the contents and molecular configurations of chiral substances in the future.  相似文献   

16.
Measurements of optical rotatory dispersion (ORD) and circular dichroism (CD) have been made in the range of 600-210 mμ for the β-glycan carbanilates as for instance, 2,3,6-tricarbanilylcellulose (I), 2,3,6-tricarbanilylmannan (II), 2,3-dicarbanilylcellulose (III), and octacarbanilylcellobiose (IV) and also for the α-glycan carbanilates, such as 2,3,6-tricarbanilylamylose (V), tricarbanilylpullulan (VI), 2,3-dicarbanilylamylose (VII), and octacarbanilylmaltose (VIII). Furthermore, the 2,3,4,6-tetracarbanilyl-α-methyl-glucopyranoside (IX) and the 1,2,3,4,6-pentacarbanilylglucose (X) have been measured in dioxane at 20°C. For the β-glycans a small negative CD in the region of 238–240 mμ and nearly symmetrical ORD curve with a crossover point at 238–240 mμ are found; this indicates a simple negative Cotton effect. In the case of α-glycosides, a strong negative CD with a maximum at 240–242 mμ and a strong positive CD with a maximum at 223–225 mμ were found; the ORD curves are asymmetrical and cross the abscissa in two places, at 241–243 and 220–222 mμ. With 2,3,4,6-tetracarbanilyl-α-methylglucoside (IX) no CD and ORD in the ultraviolet region and with 1,2,3,4,6-pentacarbanilyl-glucopyranoside (X) the ORD, but not the CD, could be measured. The ORD curve is nearly symmetrical, like those of the β-glycans but is of opposite sign. It seems impossible to discuss the striking difference of the CD and ORD spectra between the α-and the β-glycans in terms of contributions of single independant chromophores influenced by their individual different steric arrangements and their spatial relation to the glycosidic bond in C1. The exciton theory of Moffitt, which is suitable for explaining the ORD and CD spectra of helical polymers, has been applied to α- and β-glycans. A structure with helical parts is proposed for the α-glycans while a nearly planar arrangement is assumed for the β-glycans.  相似文献   

17.
Identification of proteins by MS/MS is performed by matching experimental mass spectra against calculated spectra of all possible peptides in a protein data base. The search engine assigns each spectrum a score indicating how well the experimental data complies with the expected one; a higher score means increased confidence in the identification. One problem is the false-positive identifications, which arise from incomplete data as well as from the presence of misleading ions in experimental mass spectra due to gas-phase reactions, stray ions, contaminants, and electronic noise. We employed a novel technique of reduction of false positives that is based on a combined use of orthogonal fragmentation techniques electron capture dissociation (ECD) and collisionally activated dissociation (CAD). Since ECD and CAD exhibit many complementary properties, their combined use greatly increased the analysis specificity, which was further strengthened by the high mass accuracy (approximately 1 ppm) afforded by Fourier transform mass spectrometry. The utility of this approach is demonstrated on a whole cell lysate from Escherichia coli. Analysis was made using the data-dependent acquisition mode. Extraction of complementary sequence information was performed prior to data base search using in-house written software. Only masses involved in complementary pairs in the MS/MS spectrum from the same or orthogonal fragmentation techniques were submitted to the data base search. ECD/CAD identified twice as many proteins at a fixed statistically significant confidence level with on average a 64% higher Mascot score. The confidence in protein identification was hereby increased by more than 1 order of magnitude. The combined ECD/CAD searches were on average 20% faster than CAD-only searches. A specially developed test with scrambled MS/MS data revealed that the amount of false-positive identifications was dramatically reduced by the combined use of CAD and ECD.  相似文献   

18.
The electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra of both enantiomers of naringenin (4',5,7-trihydroxyflavanone) in acetonitrile solution have been measured. The enantiomers were obtained by chiral HPLC separation of the racemic sample. DFT calculations have been performed for relevant conformers and subsequent evaluations of VCD spectra are compared with VCD experiments: safe assignment of the absolute configuration is provided, based in particular on the VCD data. The relevance of the rotational conformers of the hydroxyl groups and of the mobility of phenol moiety is studied: based on this, we provide a first interpretation of the observed intense and broad couplet at 1325/1350 cm(-1). Four conformers contribute to this pattern with different sign and amplitude as shown by DFT calculations. Time dependent DFT calculations have been performed and compared with ECD experimental data, under the same assumption of conformational properties and mobilities investigated by VCD.  相似文献   

19.
The ultraviolet ORD and CD spectra of amylose, dextran, and mycodextran acetates and some of thier oligomers were recorded in trifluoroethanol solution in the 300–185nm wavelength range. Similarly, the spectra of amylose and dextran xanthates in water solution were obtained in the 400–200 nm range. In the amylose acetate series, the monomer and dimer both show a normal acetyl n → π* transition in CD, while the trimer and the polymer both exhibit an additional, shorter wavelength peak. The latter is presumed to arise from a helical conformation of the amylose chain. This interpretation is substantiated by a helix–coil type transition of the CD spectra of amylose triacetate at elevated temperatures and a reversion of the anomalous CD to the normal CD upon partial deacetylation. By contrast, neither dextran acetates nor mycodextran acetate exhibit any conformational effects. The CD of dextran acetates is quite sensitive to β-1,6 and branch linkages. The ORD and CD of amylose xanthate are complex, suggesting the presence of organized structure in solution. The dextran xanthate shows only a simple ORD spectrum and no observable CD.  相似文献   

20.
McConnell O  He Y  Nogle L  Sarkahian A 《Chirality》2007,19(9):716-730
Phenylglycidols substituted in the 2-, 3-, and 4- positions with fluorine, chlorine, and trifluoromethyl, and with methoxy in the 3- position, were synthesized from the corresponding E-cinnamic acids and separated into their (R,R)- and (S,S)- enantiomers using subcritical fluid chromatography with mixtures of MeOH in CO(2), on either a Chiralpak AD or AS chiral stationary phase. These compounds and commercially-available (R,R)- and (S,S)-phenylglycidol were analyzed for their vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR) properties to exemplify a strategy whereby the absolute stereochemistry of common and key chiral intermediates is established early in the structure-activity and structure-property relationship phase of a drug discovery program in a pharmaceutical company. From this study, substituents in the phenyl group of the synthesized molecules were found not to grossly alter spectroscopic features, and therefore, diagnostic absorption bands in the respective VCD spectra, and the sign and shape of the measured ECD curves could be used to determine and track the absolute stereochemistry of analogs without necessarily requiring time-consuming ab initio calculations of all low energy conformers for all compounds. VCD, OR, and ECD calculations for the determination of absolute configuration carried out at the DFT level with the hybrid B3PW91 functional and the TZVP basis set were found to be especially useful in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号