首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu J  Tsai MD 《Biochemistry》2001,40(30):9014-9022
The first pre-steady-state kinetic analysis of the stereoselectivity of a DNA polymerase, Pol beta from rat brain, toward Rp and Sp isomers of dATPalphaS, and alteration of the stereoselectivity by various metal ions and by site-directed mutagenesis are reported. Diastereomers of dATPalphaS were synthesized by enzymatic methods to >98% purity. The rate of polymerization (k(pol)) and the apparent dissociation constant (K(d,app)) were measured with dATP, Rp-dATPalphaS, and Sp-dATPalphaS in the presence of Mg(2+), Mn(2+), or Cd(2+). The results indicate that wild type (WT) polymerase (Pol) beta can incorporate both Sp- and Rp-dATPalphaS in the presence of Mg(2+), but Sp is the preferred isomer. The stereoselectivity, defined as (k(pol)/K(d))(Sp)/(k(pol)/K(d))(Rp) (abbreviated Sp/Rp ratio), is 57.5 in the presence of Mg(2+). When Mg(2+) was substituted with Mn(2+) and Cd(2+), the Sp/Rp ratio decreased to 7.6 and 21, respectively. These results are discussed in relation to the crystal structures of various Pol beta complexes, as well as previous steady-state kinetic studies of other DNA polymerases. In addition, the D276R mutant was designed to introduce a potential extra hydrogen bonding interaction between the arginine side chain and the pro-Sp oxygen of the alpha-phosphate of dNTP. The kinetic data of the D276R mutant showed a pronounced relaxation of stereoselectivity of dATPalphaS (Sp/Rp ratio = 1.5, 3.7, and 1.5 for Mg(2+), Mn(2+), and Cd(2+), respectively). Furthermore, the D276R mutant showed a 5-fold enhanced reactivity toward Rp-dATPalphaS relative to WT Pol beta, suggesting that this mutant Pol beta can be used to incorporate Rp-dNTPalphaS into DNA oligomers.  相似文献   

2.
Our structural comparison of the TIM barrel metal-dependent hydrolase(-like) superfamily suggests a classification of their divergent active sites into four types: alphabeta-binuclear, alpha-mononuclear, beta-mononuclear, and metal-independent subsets. The d-aminoacylase from Alcaligenes faecalis DA1 belongs to the beta-mononuclear subset due to the fact that the catalytically essential Zn(2+) is tightly bound at the beta site with coordination by Cys(96), His(220), and His(250), even though it possesses a binuclear active site with a weak alpha binding site. Additional Zn(2+), Cd(2+), and Cu(2+), but not Ni(2+), Co(2+), Mg(2+), Mn(2+), and Ca(2+), can inhibit enzyme activity. Crystal structures of these metal derivatives show that Zn(2+) and Cd(2+) bind at the alpha(1) subsite ligated by His(67), His(69), and Asp(366), while Cu(2+) at the alpha(2) subsite is chelated by His(67), His(69) and Cys(96). Unexpectedly, the crystal structure of the inactive H220A mutant displays that the endogenous Zn(2+) shifts to the alpha(3) subsite coordinated by His(67), His(69), Cys(96), and Asp(366), revealing that elimination of the beta site changes the coordination geometry of the alpha ion with an enhanced affinity. Kinetic studies of the metal ligand mutants such as C96D indicate the uniqueness of the unusual bridging cysteine and its involvement in catalysis. Therefore, the two metal-binding sites in the d-aminoacylase are interactive with partially mutual exclusion, thus resulting in widely different affinities for the activation/attenuation mechanism, in which the enzyme is activated by the metal ion at the beta site, but inhibited by the subsequent binding of the second ion at the alpha site.  相似文献   

3.
Stratton JR  Pelton JG  Kirsch JF 《Biochemistry》2001,40(35):10411-10416
The low-barrier hydrogen bond (LBHB) between the Asp and His residues of the catalytic triad in a serine protease was perturbed via the D32C mutation in subtilisin BPN' (Bacillus protease N'). This mutant enzyme catalyzes the hydrolysis of N-Suc-Ala-Ala-Pro-Phe-SBzl with a k(cat)/K(m) value that is only 8-fold reduced from that of the wild-type (WT) enzyme. The value of k(cat)/K(m) for the corresponding p-nitroanilide (pNA) substrate is only 50-fold lower than that of the WT enzyme (DeltaDeltaG++ = 2.2 kcal/mol). The pK(a) controlling the ascending limb of the pH versus k(cat)/K(m) profile is lowered from 7.01 (WT) to 6.53 (D32C), implying that any hydrogen bond replacing that between Asp32 and His64 of the WT enzyme most likely involves the neutral thiol rather than the thiolate form of Cys32. It is shown by viscosity variation that the reaction of WT subtilisin with N-Suc-Ala-Ala-Pro-Phe-SBzl is 50% (sucrose) to 100% (glycerol) diffusion-controlled, while that of the D32C construct is 29% (sucrose) to 76% (glycerol) diffusion-controlled. The low-field NMR resonance of 18 ppm that has been assigned to a proton shared by Asp32 and His64, and is considered diagnostic of a LBHB in the WT enzyme, is not present in D32C subtilisin. Thus, the LBHB is not an inherent requirement for substantial rate enhancement for subtilisin.  相似文献   

4.
5.
Boeggeman E  Qasba PK 《Glycobiology》2002,12(7):395-407
The catalytic domain of bovine beta1,4-galactosyltransferase (beta4Gal-T1) has been shown to have two metal binding sites, each with a distinct binding affinity. Site I binds Mn(2+) with high affinity and does not bind Ca(2+), whereas site II binds a variety of metal ions, including Ca(2+). The catalytic region of beta4Gal-T1 has DXD motifs, associated with metal binding in glycosyltransferases, in two separate sequences: D(242)YDYNCFVFSDVD(254) (region I) and W(312)GWGGEDDD(320) (region II). Recently, the crystal structure of beta4Gal-T1 bound with UDP, Mn(2+), and alpha-lactalbumin was determined in our laboratory. It shows that in the primary metal binding site of beta4Gal-T1, the Mn(2+) ion, is coordinated to five ligands, two supplied by the phosphates of the sugar nucleotide and the other three by Asp254, His347, and Met344. The residue Asp254 in the D(252)VD(254) sequence in region I is the only residue that is coordinated to the Mn(2+) ion. Region II forms a loop structure and contains the E(317)DDD(320) sequence in which residues Asp318 and Asp319 are directly involved in GlcNAc binding. This study, using site-directed mutagenesis, kinetic, and binding affinity analysis, shows that Asp254 and His347 are strong metal ligands, whereas Met344, which coordinates less strongly, can be substituted by alanine or glutamine. Specifically, substitution of Met344 to Gln has a less severe effect on the catalysis driven by Co(2+). Glu317 and Asp320 mutants, when partially activated by Mn(2+) binding to the primary site, can be further activated by Co(2+) or inhibited by Ca(2+), an effect that is the opposite of what is observed with the wild-type enzyme.  相似文献   

6.
Ma H  Lewis D  Xu C  Inesi G  Toyoshima C 《Biochemistry》2005,44(22):8090-8100
Twenty five amino acids within the "N", "P", and "A" domains of the Ca(2+) ATPase (SERCA1) headpiece were subjected to site directed mutagenesis, taking advantage of a high yield expression system. Functional and conformational effects of mutations were interpreted systematically in the light of the high resolution WT structure, defining direct involvement in catalysis as well as in stabilization of various positions acquired by each domain upon substrate binding and utilization. Amino acids involved in binding of ATP (such as Phe487 and Arg560 in the N domain) or phosphate (such as Asp351, Thr625, Lys684, and Thr353 in the P domain) were characterized with respect to their binding mechanism. Further identified were "positional" roles of several amino acids that stabilize neighboring residues for optimal binding of substrate or Mg(2+), or interface between headpiece domains as they change their relative positions in the course of the catalytic cycle. These include cross-linking of the "N" and "P" domains (e.g., Arg560/Asp627 salt bridge to stabilize domain approximation by ATP binding), and stabilization of the "A", "N", and activated "P" domains in arrangements differing from the ground E2 state and driven by catalytic events. This stabilization is produced through hydrogen bonds at domain interfaces, which vary depending on the intermediate state (e.g., Glu486/T171 in E1P and E2P, as opposed to Glu486/H190 in E2). We demonstrate that specific arrangements of the headpiece domains shown in crystal structures are, in fact, required to trigger displacement of transmembrane segments during the enzyme cycle in solution, allowing long range linkage of catalytic and Ca(2+) binding functions.  相似文献   

7.
The 1.8-A resolution structure of the ATP-Mg(2+)-Ca(2+)-pyruvate quinary complex of Escherichia coli phosphoenolpyruvate carboxykinase (PCK) is isomorphous to the published complex ATP-Mg(2+)-Mn(2+)-pyruvate-PCK, except for the Ca(2+) and Mn(2+) binding sites. Ca(2+) was formerly implicated as a possible allosteric regulator of PCK, binding at the active site and at a surface activating site (Glu508 and Glu511). This report found that Ca(2+) bound only at the active site, indicating that there is likely no surface allosteric site. (45)Ca(2+) bound to PCK with a K(d) of 85 micro M and n of 0.92. Glu508Gln Glu511Gln mutant PCK had normal activation by Ca(2+). Separate roles of Mg(2+), which binds the nucleotide, and Ca(2+), which bridges the nucleotide and the anionic substrate, are implied, and the catalytic mechanism of PCK is better explained by studies of the Ca(2+)-bound structure. Partial trypsin digestion abolishes Ca(2+) activation (desensitizes PCK). N-terminal sequencing identified sensitive sites, i.e., Arg2 and Arg396. Arg2Ser, Arg396Ser, and Arg2Ser Arg396Ser (double mutant) PCKs altered the kinetics of desensitization. C-terminal residues 397 to 540 were removed by trypsin when wild-type PCK was completely desensitized. Phe409 and Phe413 interact with residues in the Ca(2+) binding site, probably stabilizing the C terminus. Phe409Ala, DeltaPhe409, Phe413Ala, Delta397-521 (deletion of residues 397 to 521), Arg396(TAA) (stop codon), and Asp269Glu (Ca(2+) site) mutations failed to desensitize PCK and, with the exception of Phe409Ala, appeared to have defects in the synthesis or assembly of PCK, suggesting that the structure of the C-terminal domain is important in these processes.  相似文献   

8.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).  相似文献   

9.
cDNAs of the two-domain arginine kinase (AK) (contiguous dimer; denoted by 2D/WT) and its separated domains 1 and 2 (denoted by D1/WT and D2/WT) from the sea anemone Anthopleura japonicus, were cloned into the plasmid pMAL, and recombinant enzymes were expressed in E. coli as MBP fusion proteins. The kinetic parameters kcat, Ka and Kia, were determined for all three AKs. All three enzymes showed distinct AK activity, and had high affinity for arginine (Ka Arg=0.25-0.48 mM). The catalytic efficiency, calculated by kcat/Ka ArgKia ATP, of the 2D/WT enzyme (182 mM(-2)s(-1), the value for one active 40 kDa domain) was two- to three-times higher than values for either D1/WT or D2/WT (80.2 and 86.4mM(-2)s(-1), respectively), suggesting the presence of domain-domain interactions (cooperativity) in the contiguous dimer. The Kia/Ka values of the three enzymes ranged from 0.88 to 1.32, indicating that there is no strong synergism in substrate binding, as seen in typical AKs. Asp62 and Arg193, which are conserved in most AKs and play a key role in stabilizing the substrate-bound structure, are also conserved in the two domains of Anthopleura AK. We replaced Asp62 in D2/WT with Glu or Gly. The catalytic efficiency and Kia/Ka for the D62E mutant were comparable to those of D2/WT, but catalytic efficiency for the D62G mutant was decreased to 13% of that of the D2/WT with a significantly increased value of Kia/Ka (1.92), indicating that Asp62 plays an important role in the expression of AK activity.  相似文献   

10.
Adenylosuccinate lyase (ASL) of Bacillus subtilis contains three conserved histidines, His(68), His(89), and His(141), identified by affinity labeling and site-directed mutagenesis as critical to the intersubunit catalytic site. The pH-V(max) profile for wild-type ASL is bell-shaped (pK (1) = 6.74 and pK (2) = 8.28). Only the alkaline side changes with temperature, characteristic of histidine pKs. To identify determinants of pK (2) in the enzyme-substrate complex, we replaced residues at two positions close to His(68) (but not to His(89) or His(141)) in the structure. Compared with the specific activity of 1.75 mumol adenylosuccinate reacting/min/mg of wild-type enzyme at pH 7.0, mutant enzymes D69E, D69N, R310Q, and R310K exhibit specific activities of 0.40, 0.04, 0.00083, and 0.10, respectively. While D69E has a K (m) for adenylosuccinate similar to that of wild-type ASL, D69N and R310K exhibit modest increases in K (m), and R310Q has an 11-fold increase in K (m). The mutant enzymes show no significant change in molecular weight or secondary structure. The major change is in the pH-V(max) profile: pK (2) is 8.48 for the D69E mutant and is decreased to 7.83 in D69N, suggesting a proximal negative charge is needed to maintain the high pK of 8.28 observed for wild-type enzyme and attributed to His(68). Similarly, R310Q exhibits a decrease in its pK (2) (7.33), whereas R310K shows little change in pK (2) (8.24). These results suggest that Asp(69) interacts with His(68), that Arg(310) interacts with and orients the beta-carboxylate of Asp(69), and that His(68) must be protonated for ASL to be active.  相似文献   

11.
Schöttler S  Wende W  Pingoud V  Pingoud A 《Biochemistry》2000,39(51):15895-15900
The monomeric homing endonuclease PI-SceI harbors two catalytic centers which cooperate in the cleavage of the two strands of its extended recognition sequence. Structural and biochemical data suggest that catalytic center I contains Asp218, Asp229, and Lys403, while catalytic center II contains Asp326, Thr341, and Lys301. The analogy with I-CreI, for which the cocrystal structure with the DNA substrate has been determined, suggests that Asp218 and Asp229 in catalytic center I and Asp326 and Thr341 in catalytic center II serve as ligands for Mg(2+), the essential divalent metal ion cofactor which can be replaced by Mn(2+) in vitro. We have carried out a mutational analysis of these presumptive Mg(2+) ligands. The variants carrying an alanine or asparagine substitution bind DNA, but (with the exception of the D229N variant) are inactive in DNA cleavage in the presence of Mg(2+), demonstrating that these residues are important for cleavage. Our finding that the PI-SceI variants carrying single cysteine substitutions at these positions are inactive in the presence of the oxophilic Mg(2+) but active in the presence of the thiophilic Mn(2+) suggests that the amino acid residues at these positions are involved in cofactor binding. From the fact that in the presence of Mn(2+) the D218C and D326C variants are even more active than the wild-type enzyme, it is concluded that Asp218 and Asp326 are the principal Mg(2+) ligands of PI-SceI. On the basis of these findings and the available structural information, a model for the composition of the two Mg(2+) binding sites of PI-SceI is proposed.  相似文献   

12.
Here we report the crystal structures of human hematopoietic prostaglandin (PG) D synthase bound to glutathione (GSH) and Ca2+ or Mg2+. Using GSH as a cofactor, prostaglandin D synthase catalyzes the isomerization of PGH2 to PGD2, a mediator for allergy response. The enzyme is a homodimer, and Ca2+ or Mg2+ increases its activity to approximately 150% of the basal level, with half maximum effective concentrations of 400 microM for Ca2+ and 50 microM for Mg2+. In the Mg2+-bound form, the ion is octahedrally coordinated by six water molecules at the dimer interface. The water molecules are surrounded by pairs of Asp93, Asp96 and Asp97 from each subunit. Ca(2+) is coordinated by five water molecules and an Asp96 from one subunit. The Asp96 residue in the Ca2+-bound form makes hydrogen bonds with two guanidium nitrogen atoms of Arg14 in the GSH-binding pocket. Mg2+ alters the coordinating water structure and reduces one hydrogen bond between Asp96 and Arg14, thereby changing the interaction between Arg14 and GSH. This effect explains a four-fold reduction in the K(m) of the enzyme for GSH. The structure provides insights into how Ca2+ or Mg2+ binding activates human hematopoietic PGD synthase.  相似文献   

13.
Bacillus cereus sphingomyelinase (SMase) is an extracellular hemolysin classified into a group of Mg(2+)-dependent neutral SMases (nSMase). Sequence comparison of bacterial and eukaryotic Mg(2+)-dependent nSMases has shown that several amino acid residues, including Glu-53 of B. cereus SMase, are conserved, suggesting a catalytic mechanism common to these enzymes. Mutational analysis has revealed that hemolytic and SM-hydrolyzing activities are abolished by E53A and E53Q mutations. Only the E53D mutant enzyme partially retains these activities, however, a significant decrease in the apparent k(cat)/K(m) for SM hydrolysis is observed by this mutation. Mg(2+) activates the wild-type enzyme in a two-step manner, i.e., at least two binding sites for Mg(2+), high- and low-affinity, are present on the enzyme. The binding affinity of essential Mg(2+) for the high-affinity site is decreased by the mutation. In addition, the binding affinities of Mn(2+) and Co(2+) (substitutes for Mg(2+)) are also decreased. On the contrary, the inhibitory effects of Ca(2+), Cu(2+), and Zn(2+) on SM-hydrolyzing activity are not influenced by the mutation. The results indicate that Glu-53 of B. cereus SMase acts as a ligand for Mg(2+) and is involved in the high-affinity Mg(2+)-binding site, which is independent of the binding site for inhibitory metals.  相似文献   

14.
Enzymatic digestion with a type IIP restriction endonuclease EcoRV was investigated on a DNA-immobilized 27-MHz quartz crystal microbalance (QCM). Real-time observations of both the enzyme binding process and the DNA cleavage process of EcoRV were followed by frequency (mass) changes on the QCM, which were dependent on divalent cations such as Ca(2+) or Mg(2+). In the presence of Ca(2+), the site-specific binding of EcoRV to DNA could be observed, without the catalytic process. On the other hand, in the presence of Mg(2+), both the binding of the enzyme to the specific DNA (mass increase) and the site-specific cleavage reaction (mass decrease) could be observed continuously from QCM frequency changes. From time courses of frequency (mass) changes, each kinetic parameter, namely binding rate constants (k(on)), dissociation rate constants (k(off)), dissociation constants (K(d)) of EcoRV to DNA, and catalytic rate constant (k(cat)) of the cleavage reaction, could be determined. The binding kinetic parameters of EcoRV in the presence of Ca(2+) were consistent with those of the binding process followed by the cleavage process in the presence of Mg(2+). The k(cat) value obtained by the QCM method was also consistent with that obtained by other methods. This study is the first to simultaneously determine k(on), k(off), and k(cat) for a type IIP restriction endonuclease on one device.  相似文献   

15.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the consecutive condensation reactions of a farnesyl pyrophosphate (FPP) with eight isopentenyl pyrophosphates (IPP), in which new cis-double bonds are formed, to generate undecaprenyl pyrophosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall. The structures of Escherichia coli UPPs were determined previously in an orthorhombic crystal form as an apoenzyme, in complex with Mg(2+)/sulfate/Triton, and with bound FPP. In a further search of its catalytic mechanism, the wild-type UPPs and the D26A mutant are crystallized in a new trigonal unit cell with Mg(2+)/IPP/farnesyl thiopyrophosphate (an FPP analogue) bound to the active site. In the wild-type enzyme, Mg(2+) is coordinated by the pyrophosphate of farnesyl thiopyrophosphate, the carboxylate of Asp(26), and three water molecules. In the mutant enzyme, it is bound to the pyrophosphate of IPP. The [Mg(2+)] dependence of the catalytic rate by UPPs shows that the activity is maximal at [Mg(2+)] = 1 mm but drops significantly when Mg(2+) ions are in excess (50 mm). Without Mg(2+), IPP binds to UPPs only at high concentration. Mutation of Asp(26) to other charged amino acids results in significant decrease of the UPPs activity. The role of Asp(26) is probably to assist the migration of Mg(2+) from IPP to FPP and thus initiate the condensation reaction by ionization of the pyrophosphate group from FPP. Other conserved residues, including His(43), Ser(71), Asn(74), and Arg(77), may serve as general acid/base and pyrophosphate carrier. Our results here improve the understanding of the UPPs enzyme reaction significantly.  相似文献   

16.
Calbindin D28k exhibits properties characteristic of a Ca2+ sensor   总被引:3,自引:0,他引:3  
Calbindin D(28k) is a member of the calmodulin superfamily of Ca(2+)-binding proteins and contains six EF-hands. The protein is generally believed to function as a Ca(2+) buffer, but the studies presented in this work indicate that it may also act as a Ca(2+) sensor. The results show that Mg(2+) binds to the same sites as Ca(2+) with an association constant of approximately 1.4.10(3) m(-1) in 0.15 m KCl. The four high affinity sites in calbindin D(28k) bind Ca(2+) in a non-sequential, parallel manner. In the presence of physiological concentrations of Mg(2+), the Ca(2+) affinity is reduced by a factor of 2, and the cooperativity, which otherwise is modest, increases. Based on the binding constants determined in the presence of physiological salt concentrations, we estimate that at the Ca(2+) concentration in a resting cell calbindin D(28k) is saturated to 40-75% with Mg(2+) but to less than 9% with Ca(2+). In contrast, the protein is expected to be nearly fully saturated with Ca(2+) at the Ca(2+) level of an activated cell. A substantial conformational change is observed upon Ca(2+) binding, but only minor structural changes take place upon Mg(2+) binding. This suggests that calbindin D(28k) undergoes Ca(2+)-induced structural changes upon Ca(2+) activation of a cell. Thus, calbindin D(28k) displays several properties that would be expected for a protein involved in Ca(2+)-induced signal transmission and hence may function not only as a Ca(2+) buffer but also as a Ca(2+) sensor. Digestion patterns resulting from limited proteolysis of the protein suggest that the loop of EF-hand 2, a variant site that does not bind Ca(2+), becomes exposed upon Ca(2+) binding.  相似文献   

17.
Kubiak RJ  Yue X  Hondal RJ  Mihai C  Tsai MD  Bruzik KS 《Biochemistry》2001,40(18):5422-5432
Phosphatidylinositol-specific phospholipase C (PI-PLC) catalyzes the cleavage of the P-O bond in phosphatidylinositol via intramolecular nucleophilic attack of the 2-hydroxyl group of inositol on the phosphorus atom. Our earlier stereochemical and site-directed mutagenesis studies indicated that this reaction proceeds by a mechanism similar to that of RNase A, and that the catalytic site of PI-PLC consists of three major components analogous to those observed in RNase A, the His32 general base, the His82 general acid, and Arg69 acting as a phosphate-activating residue. In addition, His32 is associated with Asp274 in forming a catalytic triad with inositol 2-hydroxyl, and His82 is associated with Asp33 in forming a catalytic diad. The focus of this work is to provide a global view of the mechanism, assess cooperation between various catalytic residues, and determine the origin of enzyme activation by the hydrophobic leaving group. To this end, we have investigated kinetic properties of Arg69, Asp33, and His82 mutants with phosphorothioate substrate analogues which feature leaving groups of varying hydrophobicity and pK(a). Our results indicate that interaction of the nonbridging pro-S oxygen atom of the phosphate group with Arg69 is strongly affected by Asp33, and to a smaller extent by His82. This result in conjunction with those obtained earlier can be rationalized in terms of a novel, dual-function triad comprised of Arg69, Asp33, and His82 residues. The function of this triad is to both activate the phosphate group toward the nucleophilic attack and to protonate the leaving group. In addition, Asp33 and His82 mutants displayed much smaller degrees of activation by the fatty acid-containing leaving group as compared to the wild-type (WT) enzyme, and the level of activation was significantly reduced for substrates featuring the leaving group with low pK(a) values. These results strongly suggest that the assembly of the above three residues into the fully catalytically competent triad is controlled by the hydrophobic interactions of the enzyme with the substrate leaving group.  相似文献   

18.
G L Lin  C F Bennett  M D Tsai 《Biochemistry》1990,29(11):2747-2757
(Rp)- and (Sp)-1,2-dipalmitoyl-sn-glycero-3-thiophosphoinositol (DPPsI) were synthesized as a mixture and their configurations assigned on the basis of the stereospecific hydrolysis catalyzed by phospholipase A2 (PLA2) from bee venom. PLA2 is known to be stereospecific to the Rp isomer of 1,2-dipalmitoyl-sn-glycero-3-thiophosphocholine (DPPsC) and 1,2-dipalmitoyl-sn-glycero-3-thiophosphoethanolamine (DPPsE). Since the configurations of (Rp)- and (Sp)-DPPsI correspond to those of (Sp)- and (Rp)-DPPsC, respectively, due to a change in priority, the isomer specifically hydrolyzed by PLA2 was assigned to (Sp)-DPPsI. The DPPsI analogues were then used to probe the mechanism and to elucidate the steric course of the reaction catalyzed by phosphatidylinositide-specific phospholipase C (PI-PLC) from Bacillus cereus and for both isozyme I and isozyme II of PI-PLC from guinea pig uterus. It was found that the Rp isomer of DPPsI is the preferred substrate for all three PI-PLCs. Thus PI-PLC shows the same stereospecificity as phosphatidylcholine-specific PLC (PC-PLC), which prefers the Sp isomer of DPPsC. The ratio of the two products inositol 1,2-cyclic phosphorothioate (cIPs) and inositol phosphorothioate (IPs) was not significantly perturbed by the use of phosphorothioate analogue for all three PI-PLCs, which implies that IPs is not produced by enzyme-mediated ring opening of cIPs and supports a parallel pathway for the formation of both products. In order to elucidate the steric course of the cyclization reaction, exo and endo isomers of cIPs were synthesized and their absolute configurations at phosphorus were determined by nuclear magnetic resonance and other techniques. It was found that exo-cIPs is the product produced by all three PI-PLCs. Thus the steric course of the conversion DPPsI to cIPs catalyzed by all three PI-PLCs was inversion of configuration at phosphorus. These results taken together suggest that the reaction catalyzed by PI-PLC most likely proceeds via direct attack by the 2-OH group to generate the cyclic product, and parallelly by water to generate the noncyclic inositol phosphates, without involving a covalent enzyme-phosphoinositol intermediate.  相似文献   

19.
Cytochrome c oxidase (COX) from R. sphaeroides contains one Ca(2+) ion per enzyme that is not removed by dialysis versus EGTA. This is similar to COX from Paracoccus denitrificans [Pfitzner, U., Kirichenko, A., Konstantinov, A. A., Mertens, M., Wittershagen, A., Kolbesen, B. O., Steffens, G. C. M., Harrenga, A., Michel, H., and Ludwig, B. (1999) FEBS Lett. 456, 365-369] and is in contrast to the bovine oxidase, which binds Ca(2+) reversibly. A series of R. sphaeroides mutants with replacements of the E54, Q61, and D485 residues, which form the Ca(2+) coordination sphere in subunit I, has been generated. The substitutions for the E54 residue do not assemble normally. Mutants with the Q61 replacements are active and retain the tightly bound Ca(2+); their spectra are not perturbed by added Ca(2+) or EGTA. The D485A mutant is active, binds to Ca(2+) reversibly, like the mitochondrial oxidase, and exhibits the red shift in the heme a absorption spectrum upon Ca(2+) binding for both reduced and oxidized states of heme a. The K(d) value of 6 nM determined by equilibrium titrations is much lower than that reported for the homologous D477A mutant of Paracoccus denitrificans or for bovine COX (K(d) = 1-3 microM). The rate of Ca(2+) binding with the D485A oxidase (k(on) = 5 x 10(3) M(-1) s(-1)) is comparable to that observed earlier for bovine COX, but the off-rate is extremely slow (approximately 10(-3) s(-1)) and highly temperature-dependent. The k(off) /k(on) ratio (190 nM) is about 30-fold higher than the equilibrium K(d) of 6 nM, indicating that formation of the Ca(2+)-adduct may involve more than one step. Sodium ions reverse the Ca(2+)-induced red shift of heme a and dramatically decrease the rate of Ca(2+) binding to the D485A mutant COX. With the D485A mutant, 1 Ca(2+) competes with 1 Na(+) for the binding site, whereas 2 Na(+) compete with 1 Ca(2+) for binding to the bovine oxidase. This finding indicates that the aspartic residue D442 (a homologue of R. sphaeroides D485) may be the second Na(+) binding site in bovine COX. No effect of Ca(2+) binding to the D485A mutant is evident on either the steady-state enzymatic activity or several time-resolved partial steps of the catalytic cycle. It is proposed that the tightly bound Ca(2+) plays a structural role in the bacterial oxidases while the reversible binding with the mammalian enzyme may be involved in the regulation of mitochondrial function.  相似文献   

20.
Thermolysin is remarkably activated and stabilized by neutral salts, and surface charges are suggested important in its activity and stability. The effects of introducing negative charge into the molecular surface on its activity and stability are described. Seven serine residues were selected, and each of them was changed for aspartate by site-directed mutagenesis in a thermolysin mutant. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide, the k(cat)/K(m) values of all mutants were almost similar to that of the wild-type enzyme (WT). However, those of six out of seven mutants were enhanced 17-19 times with 4 M NaCl, being slightly higher than WT. The remaining casein-hydrolyzing activities of the S53D and S65D mutants (Ser53 and Ser65 are replaced with Asp, respectively) after 30-min incubation with 10 mM CaCl(2) at 85 degrees C were 78 and 63%, being higher than those of WT (51%) and the other mutants (35-53%). S53D was stabilized with increase in the enthalpy change of activation for thermal inactivation while S65D was with decrease in the entropy change of activation. The stability of WT was enhanced by CaCl(2) and reached the level of S53D and S65D at 100 mM, suggesting that S53D and S65D might be stabilized by reinforcement of the Ca(2+)-binding structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号