共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial DNA mutations and human disease 总被引:1,自引:0,他引:1
Helen A.L. Tuppen 《BBA》2010,1797(2):113-109
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances. 相似文献
2.
Ana M. González Mariano Hernández Andrea Volz José Pestano José M. Larruga Diether Sperlich Vicente M. Cabrera 《Journal of molecular evolution》1990,31(2):122-131
Summary Mitochondrial DNA (mtDNA) restriction site maps for nine species of theDrosophila obscura subgroup and forDrosophila melanogaster were established. Taking into account all restriction enzymes (12) and strains (45) analyzed, a total of 105 different sites were detected, which corresponds to a sample of 3.49% of the mtDNA genome. Based on nucleotide divergences, two phylogenetic trees were constructed assuming either constant or variable rates of evolution. Both methods led to the same relationships. Five differentiated clusters were found for theobscura subgroup species, one Nearctic, represented byDrosophila pseudoobscura, and four Palearctic, two grouping the related triads of speciesDrosophila subobscura, Drosophila madeirensis, Drosophila guanche, andDrosophila ambigua, Drosophila obscura, Drosophila subsilvestris, and two more represented by one species each,Drosophila bifasciata, andDrosophila tristis. The different Palearctic clusters are as distant between themselves as with the Nearctic one. For the related speciesD. subobscura, D. madeirensis, andD. guanche, the pairD. subobscura-D. madeirensis is the closest one. The relationships found by nucleotide divergence were confirmed by differences in mitochondrial genome size, with related species sharing similar genome lengths and differing from the distant ones. The total mtDNA size range for theobscura subgroup species was from 15.5 kb forD. pseudoobscura to 17.1 forD. tristis. 相似文献
3.
Mitochondrial DNA in human malignancy 总被引:71,自引:0,他引:71
4.
Michel Solignac Monique Monnerot Jean-Claude Mounolou 《Journal of molecular evolution》1986,23(1):31-40
Detailed restriction maps (40 cleavage sites on average) of mitochondrial DNAs (mtDNAs) from the eight species of the melanogaster species subgroup of Drosophila were established. Comparison of the cleavage sites allowed us to build a phylogenetic tree based on the matrix of nucleotide distances and to select the most parsimonious network. The two methods led to similar results, which were compared with those in the literature obtained from nuclear characters. The three chromosomally homosequential species D. simulans, D. mauritiana, and D. sechellia are mitochondrially very related, but exhibit complex phylogenetic relationships. D. melanogaster is their closest relative, and the four species form a monophyletic group (the D. melanogaster complex), which is confirmed by the shared unusual length of their mt genomes (18-19 kb). The other four species of the subgroup (D. yakuba, D. teissieri, D. erecta, and D. orena) are characterized by a much shorter mt genome (16-16.5 kb). The monophyletic character of the D. yakuba complex, however, is questionable. Two species of this complex, D. yakuba and D. teissieri, are mitochondrially indistinguishable (at the level of our investigation) in spite of their noticeable allozymic and chromosomal divergence. Finally, mtDNA distances were compared with the nuclear-DNA distances thus far established. These sequences seem to evolve at rather similar rates, the mtDNA rate being barely double that of nuclear DNA. 相似文献
5.
Mark Stoneking 《Evolutionary anthropology》1993,2(2):60-73
The study of recent human evolution, or the origin of modern humans, is currently dominated by two theories. The recent African origin hypothesis holds that there was a single origin of modern humans in Africa about 100,000 years ago, after which these humans dispersed throughout the rest of the world, mixing little or not at all with nonmodern populations. The multiregional evolution hypothesis holds that there was no single origin of modern humans but, instead, that the mutations and other traits that led to modern humans were spread in concert throughout the old world by gene flow, leading to genetic continuity among old world populations during the past million years. Although both of these theories are based on observations stemming from the fossil record, much discussion and controversy during the past six years has focused on the application and interpretation of studies of DNA variation, particularly mitochondrial DNA (mtDNA). The past year, especially, has brought new data, interpretations, and controversies. Indeed, I initially resisted writing this review, on the grounds that new information would be likely to render it obsolete by the time it was published. However, now that the dust is starting to settle, it seems timely to review various investigations and interpretations and where they are likely to lead. While the focus of this review is the mtDNA story, brief mention is made of studies of nuclear DNA variation (both autosomal and Y-chromosome DNA) and the implications of the genetic data with regard to the fossil record and our understanding of recent human evolution. 相似文献
6.
M. H. Crawford 《Evolutionary anthropology》1993,2(4):115-116
7.
The sequences of three regions of mitochondrial DNA (mtDNA) of a total length of 5226 bp were used to study the phylogeography of the genus Abies. The mtDNA haplotype network, comprising 36 studied Abies taxa, consisted of two branches; the first represented all American species plus two Asian, and the second included the remaining Eurasian species. Within these clusters, the haplotypes formed nine major groups, generally corresponding to the clades of the previously obtained phylogeny based on chloroplast DNA (cpDNA), but the relationships of these groups were significantly different; species assignment to the particular mtDNA haplotype group was more in line with its geographical distribution. In addition, the mtDNA haplotype network contains cycles indicating the recombination. It is assumed that the incongruence of cpDNA and mtDNA phylogenies is caused by the introgression capture of alien mtDNA during species hybridization and thus contains information about past migrations. The cases of incongruence of mitochondrial and chloroplast DNA suggesting a migration of Abies between Asia and North America are discussed. 相似文献
8.
Many models of tumour formation have been put forth so far. In general they involve mutations in at least three elements within the cell: oncogenes, tumour suppressors and regulators of telomere replication. Recently numerous mutations in mitochondria have been found in many tumours, whereas they were absent in normal tissues from the same individual. The presence of mutations, of course, does not prove that they play a causative role in development of neoplastic lesions and progression; however, the key role played by mitochondria in both apoptosis and generation of DNA-damaging reactive oxygen species might indicate that the observed mutations contribute to tumour development. Recent experiments with nude mice have proven that mtDNA mutations are indeed responsible for tumour growth and exacerbated ROS production. This review describes mtDNA mutations in main types of human neoplasia. 相似文献
9.
Mitochondrial DNA mutations in human disease 总被引:9,自引:0,他引:9
The human mitochondrial genome is extremely small compared with the nuclear genome, and mitochondrial genetics presents unique clinical and experimental challenges. Despite the diminutive size of the mitochondrial genome, mitochondrial DNA (mtDNA) mutations are an important cause of inherited disease. Recent years have witnessed considerable progress in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer. However, many challenges remain, including the prevention and treatment of these diseases. This review explores the advances that have been made and the areas in which future progress is likely. 相似文献
10.
Díez-Sánchez C Ruiz-Pesini E Lapeña AC Montoya J Pérez-Martos A Enríquez JA López-Pérez MJ 《Biology of reproduction》2003,68(1):180-185
Sperm mitochondria play an important role in spermatozoa because of the high ATP demand of these cells. Different mitochondrial DNA (mtDNA) mutations and haplogroups influence sperm function. The mtDNA dose also contributes to genetic variability and pathology in different tissues and organs, but nothing is known about its relevance in the performance of spermatozoa. We estimated the variability in mtDNA content within a population of men. Different mtDNA:nuclear DNA ratios were characteristic of progressive and nonprogressive spermatozoa, confirming the influence of mtDNA content on sperm functionality. We also estimated that the absolute content of mtDNA was 700 and 1200 mtDNA copies per cell in progressive and nonprogressive human spermatozoa, respectively. These results suggest that a marked increase of mtDNA copy number per cell volume takes place during spermatogenesis. 相似文献
11.
Summary TheDrosophila nasuta group consists of about 12 closely related species distributed throughout the Indo-Pacific region. They are of great interest because of their evolutionary idiosyncrasies including little morphological differentiation, the ability to intercross in the laboratory often producing fertile offspring, and substantial chromosomal evolution. Studies of metric traits, reproductive isolation, and chromosomal and enzyme polymorphisms have failed to resolve the phylogeny of the species. We report the results of a survey of the mitochondrial DNA (mtDNA) restriction patterns of the species. The phylogeny obtained is consistent with other available information and suggests thatD. albomicans may represent the ancestral lineage of the group. The amount of polymorphism in local populations (=1.0% per site) is within the typical range observed in other animals, includingDrosophila. The degree of differentiation between species is, however, low: the origin of the group is tentatively dated about 6–8 million years ago. This study confirms the usefulness of mtDNA restriction patterns for ascertaining the phylogeny of closely related species. 相似文献
12.
Mitochondrial DNA deletion in human myocardium 总被引:4,自引:0,他引:4
Nobuakira Takeda Akira Tanamura Takaaki Iwai Izuru Nakamura Mitsutoshi Kato Tadanari Ohkubo Kenji Noma 《Molecular and cellular biochemistry》1993,119(1-2):105-108
Mutation of myocardial mitochondrial DNA was investigated in human left ventricles obtained at autopsy using the polymerase chain reaction (PCR). Seventeen autopsy cases were examined, including patients with diabetes mellitus, myocardial infarction, cardiomyopathy, cancer, and other diseases. Two cases of diabetes mellitus, 2 of myocardial infarction, and 1 of pulmonary fibrosis showed a 7.4 kb deletion of myocardial mitochondrial DNA. Primer shift PCR confirmed that an amplified DNA fragment had not been obtained by misannealing of the primers. It is unclear how much these findings are related to the severity or prognosis of the various diseases, but they indicate that mutation of myocardial mitochondrial DNA can occur in other diseases besides cardiomyopathy, although the influence of aging could not be excluded. 相似文献
13.
Santoro A Salvioli S Raule N Capri M Sevini F Valensin S Monti D Bellizzi D Passarino G Rose G De Benedictis G Franceschi C 《Biochimica et biophysica acta》2006,1757(9-10):1388-1399
The main message of this review can be summarized as follows: aging and longevity, as complex traits having a significant genetic component, likely depend on a number of nuclear gene variants interacting with mtDNA variability both inherited and somatic. We reviewed the data available in the literature with particular attention to human longevity, and argued that what we hypothesize for aging and longevity could have a more general relevance and be extended to other age-related complex traits such as Alzheimer's and Parkinson's diseases. The genetics which emerges for complex traits, including aging and longevity, is thus even more complicated than previously thought, as epistatic interactions between nuclear gene polymorphisms and mtDNA variability (both somatic and inherited) as well as between mtDNA somatic mutations (tissue specific) and mtDNA inherited variants (haplogroups and sub-haplogroups) must be considered as additional players capable of explaining a part of the aging and longevity phenotype. To test this hypothesis is one of the main challenge in the genetics of aging and longevity in the next future. 相似文献
14.
Mitochondrial DNA (mtDNA) restriction-site maps for six species (10strains) of the Drosophila montium subgroup were established. A total of 50restriction sites were mapped, corresponding to 1.67% of the mtDNA genome.On the basis of differences in the restriction sites, nucleotide divergence(delta) was calculated for each pair of species (strains), and phylogenetictrees were constructed by using distance- matrix and parsimony methods.Comparison of the resultant phylogenetic trees shows that the siblingspecies D. auraria and D. quadraria are closely related. At the otherextreme, considerable divergence was observed between the two strains of D.serrata and between D. serrata and D. birchii, a finding that contrastswith their grouping within the same species complex. Nevertheless, our dataindicate that these six oriental montium species are rather closelyrelated. 相似文献
15.
The Anaxyrus boreas species group currently comprises four species in western North America including the broadly distributed A. boreas, and three localized species, Anaxyrus nelsoni, Anaxyrusexsul and Anaxyrus canorus. Phylogenetic analyses of the mtDNA 12S rDNA, cytochrome oxidase I, control region, and restriction sites data, identified three major haplotype clades. The Northwest clade (NW) includes both subspecies of A. boreas and divergent minor clades in the middle Rocky Mountains, coastal, and central regions of the west and Pacific Northwest. The Southwest (SW) clade includes A. exsul, A. nelsoni, and minor clades in southern California. Anaxyrus canorus, previously identified as paraphyletic, has populations in both the NW and SW major clades. The Eastern major clade (E) includes three divergent lineages from southern Utah, the southern Rocky Mountains, and north of the Great Basin at the border of Utah and Nevada. These results identify new genetic variation in the eastern portion of the toad's range and are consistent with previous regional studies from the west coast. Low levels of control region sequence divergence between major clades (2.2-4.7% uncorrected pair-wise distances) are consistent with Pleistocene divergence and suggest that the phylogeographic history of the group was heavily influenced by dynamic Pleistocene glacial and climatic changes, and especially pluvial changes, in western North America. Results reported here may impact conservation plans in that the current taxonomy does not reflect the diversity in the group. 相似文献
16.
Since their first association with human disease in 1988, more than 250 pathogenic point mutations and rearrangements of the 16.6 kb mitochondrial genome (mtDNA) have been reported in a spectrum of clinical disorders which exhibit prominent muscle and central nervous system involvement. With novel mutations and disease phenotypes still being described, mtDNA disorders are recognized collectively as common, inherited genetic diseases although relatively little is still known concerning the precise pathophysiological mechanisms that lead to cell dysfunction and pathology. This review considers the basic principles of mitochondrial genetics which govern both the behaviour and investigation of pathogenic mtDNA mutations summarizing recent advances in this area, and an assessment of the ongoing debate into the role of somatic mtDNA mutations in neurodegenerative disease, ageing and cancer. 相似文献
17.
AlexandraPavlova Robert M.Zink SievertRohwer Evgeniy A.Koblik Yaroslav A.Red'kin Igor V.Fadeev Evgeniy V.Nesterov 《Journal of avian biology》2005,36(4):322-336
We analyzed sequences of two mitochondrial DNA (mtDNA) gene regions (control region and ND2) totaling 1477 base‐pairs from 232 specimens of the white wagtail Motacilla alba obtained from 27 localities throughout Eurasia. Although overall haplotype diversity was relatively low (0.79) and the most common haplotype was shared by 45% of individuals, belonging to six subspecies, a high level of population differentiation was detected. The mtDNA tree revealed three clades: (1) most individuals from Krasnodar (belonging to M. a. alba subspecies), (2) all individuals from Almaty and some from Primor'e (belonging to M. a. personata, M. a. lugens and M. a. leucopsis subspecies), and (3) the remaining individuals (representing all subspecies and all localities except Almaty). We suggest that these three clades represent historically isolated populations that relatively recently came into secondary contact in Krasnodar and Primor'e. None of the six subspecies were reciprocally monophyletic in the mtDNA tree. The Krasnodar population appeared to receive immigrants from other localities, but distinctive haplotypes from this locality did not appear elsewhere, suggesting asymmetric gene flow. Signatures of recent gene flow between northern populations were detected, and there was no evidence of isolation by distance within the northern group of populations. Mismatch distributions for most localities were consistent with population expansions. We also analyzed 12 male plumage characters from 93 study skins sampled from 24 populations. Phylogenetic trees resulting from separate genetic and morphological analyses were incongruent. Plumage evolution seems to be under strong sexual or natural selection, which favors particular phenotypes in various areas irrespective of the mitochondrial background. Dispersal events at different evolutionary times could have obscured the effects of earlier isolation events. The mtDNA data does not support species status for M. a. lugens and M. a. personata, which shared haplotypes with other subspecies of M. alba. We recommend that M. lugens and M. personata are placed as junior synonyms of M. alba. 相似文献
18.
Phylogenetic analysis has led to significant insights into the evolution of early life-history stages of marine invertebrates. Although echinoderms have been a major focus, developmental and phylogenetic information are relatively poor for ophiuroids, the most species-rich echinoderm class. We used DNA sequences from two mitochondrial genes to develop a phylogenetic hypothesis for 14 brittlestar species in the genus Macrophiothrix (Family Ophiotrichidae). Species are similar in adult form and ecology, but have diverse egg sizes and modes of larval development. In particular, two species have rare larval forms with characteristics that are intermediate between more common modes of feeding and non-feeding development. We use the phylogeny to address whether intermediate larval forms are rare because the evolution of a simplified morphology is rapid once food is no longer required for development. In support of this hypothesis, branch lengths for intermediate forms were short relative to those for species with highly derived non-feeding forms. The absolute rarity of such forms makes robust tests of the hypothesis difficult. 相似文献
19.
Mitochondrial DNA sequences of primates: Tempo and mode of evolution 总被引:99,自引:0,他引:99
Wesley M. Brown Ellen M. Prager Alice Wang Allan C. Wilson 《Journal of molecular evolution》1982,18(4):225-239
Summary We cloned and sequenced a segment of mitochondrial DNA from human, chimpanzee, gorilla, orangutan, and gibbon. This segment is 896 bp in length, contains the genes for three transfer RNAs and parts of two proteins, and is homologous in all 5 primates. The 5 sequences differ from one another by base substitutions at 283 positions and by a deletion of one base pair. The sequence differences range from 9 to 19% among species, in agreement with estimates from cleavage map comparisons, thus confirming that the rate of mtDNA evolution in primates is 5 to 10 times higher than in nuclear DNA. The most striking new finding to emerge from these comparisons is that transitions greatly outnumber transversions. Ninety-two percent of the differences among the most closely related species (human, chimpanzee, and gorilla) are transitions. For pairs of species with longer divergence times, the observed percentage of transitions falls until, in the case of comparisons between primates and non-primates, it reaches a value of 45. The time dependence is probably due to obliteration of the record of transitions by multiple substitutions at the same nucleotide site. This finding illustrates the importance of choosing closely related species for analysis of the evolutionary process. The remarkable bias toward transitions in mtDNA evolution necessitates the revision of equations that correct for multiple substitutions at the same site. With revised equations, we calculated the incidence of silent and replacement substitutions in the two protein-coding genes. The silent substitution rate is 4 to 6 times higher than the replacement rate, indicating strong functional constraints at replacement sites. Moreover, the silent rate for these two genes is about 10% per million years, a value 10 times higher than the silent rate for the nuclear genes studied so far. In addition, the mean substitution rate in the three mitochondrial tRNA genes is at least 100 times higher than in nuclear tRNA genes. Finally, genealogical analysis of the sequence differences supports the view that the human lineage branched off only slightly before the gorilla and chimpanzee lineages diverged and strengthens the hypothesis that humans are more related to gorillas and chimpanzees than is the orangutan.Abbreviations mtDNA
mitochondrial DNA
- bp
base pair
- URF
unidentified reading frame 相似文献
20.
Mitochondrial DNA in anucleate human blood cells 总被引:4,自引:0,他引:4
R C Shuster A J Rubenstein D C Wallace 《Biochemical and biophysical research communications》1988,155(3):1360-1365
Homogeneous populations of human blood platelets or erythrocytes were lysed in alkaline EDTA, bound to nitrocellulose and hybridized to a radioactive mtDNA probe. By comparison to standards of known mtDNA concentration, we determined that platelets contained 4 mtDNA molecules per cell. Rhodamine 123 staining revealed an average of 4 mitochondria per platelet indicating that each mitochondrion contains a single mtDNA molecule. No detectable mtDNA was found in erythrocyte lysates. Using the same procedure, we found that in nucleated cells, mitochondria contained multiple mtDNAs per mitochondrion. 相似文献