首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reversible association of AMP deaminase (AMPD, EC 3.5.4.6) with elements of the contractile apparatus is an identified mechanism of enzyme regulation in mammalian skeletal muscle. All three members of the human AMPD multigene family contain coding information for polypeptides with divergent N-terminal and conserved C-terminal domains. In this study, serial N-terminal deletion mutants of up to 111 (AMPD1), 214 (AMPD2), and 126 (AMPD3) residues have been constructed without significant alteration of catalytic function or protein solubility. The entire sets of active enzymes are used to extend our understanding of the contractile protein binding of AMPD. Analysis of the most truncated active enzymes demonstrates that all three isoforms can associate with skeletal muscle actomyosin and suggests that a primary binding domain is located within the C-terminal 635-640 residues of each polypeptide. However, discrete stretches of N-terminal sequence alter this behavior. Residues 54-83 in the AMPD1 polypeptide contribute to a high actomyosin binding capacity of both isoform M spliceoforms, although the exon 2- enzyme exhibits significantly greater association compared to its exon 2+ counterpart. Conversely, residues 129-183 in the AMPD2 polypeptide reduce actomyosin binding of isoform L. In addition, residues 1-48 in the AMPD3 polypeptide dramatically suppress contractile protein binding of isoform E, thus allowing this enzyme to participate in other intracellular interactions.  相似文献   

2.
Human AMPD2 cDNA clones have been isolated from T-lymphoblast and placental lambda gt11 libraries utilizing a previously cloned rat partial AMPD2 cDNA as the probe. Alignment analysis of all cDNA clones indicates the presence of intervening sequences in several placental isolates. This has been confirmed by sequencing human AMPD2 genomic clones. Intervening sequences can be removed from the cDNA clones by restriction with endonucleases at unique sites within the proposed open reading frame. This results in a 3292-base pair cDNA proposed to contain the entire AMPD2 open reading frame, which would encode a 760-amino acid polypeptide with a predicted subunit molecular mass of 88.1 kDa. Nucleotide and predicted amino acid comparisons with the 264 base pairs of proposed coding sequences in the rat AMPD2 cDNA demonstrate 91% similarity and identity, respectively. A comparison of the predicted human AMPD1 and AMPD2 polypeptides demonstrates homology in their C-terminal domains. Included in this region is the conserved motif, SLSTDDP, proposed to be part of the catalytic site of all AMP deaminases. In contrast, the predicted N-terminal domains of the human AMPD1 and AMPD2 polypeptides are unique. When placed in a prokaryotic expression vector, the human AMPD2 cDNA expresses AMP deaminase activity which can be precipitated with polyclonal antisera specific for isoform L.  相似文献   

3.
Because mutation of AMP deaminase 1 gene leading to reduced AMP deaminase activity may result in protection of cardiac function in patients with heart disease, inhibitors of AMP deaminase (AMPD) may have therapeutic applications. This study evaluated the effect of a specific inhibitor of AMP deaminase 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol (AMPDI) on the isolated human enzyme and on nucleotide catabolism in rat cardiomyocytes. AMPDI effectively inhibited isolated human AMPD with an IC(50) = 0.5 micro M. AMPDI was much less effective with isolated cardiomyocytes (IC(50) = 0.5 mM). AMPDI is a very effective inhibitor of AMPD that despite lower efficiency in the cell system examined could be useful for in vivo studies.  相似文献   

4.
Despite the heteroplasmic lower population of mitochondrial (mt) DNA deletion, mtDNA deletion is significantly related to the loss of atrial adenine nucleotides. To elucidate its mechanism, we examined the frequency of a 7.4-kb mtDNA deletion, the concentration of adenine nucleotides, and the activity of AMP catabolic enzymes in 10 human right atria obtained from cardiac surgery, using quantitative PCR, HPLC, and immunoprecipitations. The atrial concentrations of ATP, ADP, AMP, and the total adenine nucleotides were significantly lower in patients with deletion than those in patients without deletion, despite the lower frequency of their deletion. The activities of total AMP deaminase (AMPD), liver-type (AMPD 2), and heart-type isoform (AMPD 3) were significantly higher in patients with deletion than in patients without deletion, although there was no significant difference in the cytosolic 5(')-nucleotidase among them. In conclusion, mtDNA deletion coordinately induces AMP deaminase to contribute to the loss of atrial adenine nucleotides through degrading AMP excessively.  相似文献   

5.
Mammalian AMP deaminase 3 (AMPD3) enzymes reportedly bind to intracellular membranes, plasma lipid vesicles, and artificial lipid bilayers with associated alterations in enzyme conformation and function. However, proteolytic sensitivity of AMPD polypeptides makes it likely that prior studies were performed with N-truncated enzymes. This study uses erythrocyte ghosts to characterize the reversible cytoplasmic membrane association of human full-sized recombinant isoform E (AMPD3). Membrane-bound isoform E exhibits diminished catalytic activity whereas low micromolar concentrations of the cationic antibiotic, neomycin, disrupt this protein-lipid interaction and relieve catalytic inhibition. The cytoplasmic membrane association of isoform E also displays an inverse correlation with pH in the physiological range. Diethyl pyrocarbonate (DEPC) modification of isoform E nearly abolishes its cytoplasmic membrane binding capacity, and this effect can be reversed by hydroxylamine. Difference spectra reveal that 18 of 29 histidine residues in each isoform E subunit are N-carbethoxylated by DEPC. These combined data demonstrate that protonated imidazole rings of histidine residues mediate a pH-responsive association of isoform E with anionic charges on the surface of the cytoplasmic membrane, possibly phosphatidylinositol 4,5-bisphosphate, a pure noncompetitive inhibitor of the enzyme. Finally, AMPD1 and a series of N-truncated AMPD3 enzymes are used to show that these behaviors are specific to isoform E and require up to 48 N-terminal amino acids, even though this stretch of sequence contains no histidine residues. The pH-responsive cytosol-membrane partitioning of isoform E may be an important mechanism for branch point regulation of adenylate catabolism.  相似文献   

6.
Because mutation of AMP deaminase 1 gene leading to reduced AMP deaminase activity may result in protection of cardiac function in patients with heart disease, inhibitors of AMP deaminase (AMPD) may have therapeutic applications. This study evaluated the effect of a specific inhibitor of AMP deaminase 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol (AMPDI) on the isolated human enzyme and on nucleotide catabolism in rat cardiomyocytes. AMPDI effectively inhibited isolated human AMPD with an IC 50 = 0.5 μ M. AMPDI was much less effective with isolated cardiomyocytes (IC 50 = 0.5 mM). AMPDI is a very effective inhibitor of AMPD that despite lower efficiency in the cell system examined could be useful for in vivo studies.  相似文献   

7.
8.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   

9.
10.
Mahnke DK  Sabina RL 《Biochemistry》2005,44(14):5551-5559
Erythrocyte AMP deaminase [isoform E (AMPD3)] is activated in response to increased intracellular calcium levels in Tarui's disease, following exposure of ionophore-treated cells to extracellular calcium, and by the addition of calcium to freshly prepared hemolysates. However, the assumption that Ca(2+) is a positive effector of isoform E is inconsistent with the loss of sensitivity to this divalent cation following dilution of erythrocyte lysates or enzyme purification. Ca(2+) regulation of isoform E was studied by examining in vitro effects of calmodulin (CaM) on this enzyme and by monitoring the influence of CaM antagonists on purine catabolic flow in freshly prepared erythrocytes under various conditions of energy imbalance. Erythrocyte and recombinant isoform E both adsorb to immobilized Ca(2+)-CaM, and relative adsorption across a series of N-truncated recombinant enzymes localizes CaM binding determinants to within residues 65-89 of the AMPD3 polypeptide. Ca(2+)-CaM directly stimulates isoform E catalytic activity through a K(mapp) effect and also antagonizes the protein-lipid interaction between this enzyme and intracellular membranes that inhibits catalytic activity. AMP is the predominant purine catabolite in erythrocytes deprived of glucose or exposed to A23187 ionophore alone, whereas IMP accumulates when Ca(2+) is included under the latter conditions and also during autoincubation at 37 degrees C. Preincubation with a CaM antagonist significantly slows the accumulation of erythrocyte IMP under both conditions. The combined results reveal a protein-protein interaction between Ca(2+)-CaM and isoform E and identify a mechanism that advances our understanding of erythrocyte purine metabolism. Ca(2+)-CaM overcomes potent isoform E inhibitory mechanisms that function to maintain the total adenine nucleotide pool in mature erythrocytes, which are unable to synthesize AMP from IMP because of a developmental loss of adenylosuccinate synthetase. This may also explain why Tarui's disease erythrocytes exhibit accelerated adenine nucleotide depletion in response to an increase in intracellular Ca(2+) concentration. This regulatory mechanism could also play an important role in purine metabolism in other human tissues and cells where the AMPD3 gene is expressed.  相似文献   

11.
【目的】实现鼠灰链霉菌来源经密码子优化后的腺苷酸脱氨酶基因在乳酸克鲁维酵母(Kluyveromyces lactis GG799)中组成型表达。【方法】以鼠灰链霉菌(Streptomyces murinus)来源的腺苷酸脱氨酶(AMP)基因经密码子优化后作为模板,设计特异性引物,PCR扩增AMP脱氨酶基因opt-AMPD,以p KLAC1为载体构建重组表达质粒p KLAC1-opt-AMPD,经Sac II线性化后电转化法转入K.lactis GG799,筛选得到重组菌株,测定酶活,经His TrapTM HP纯化后得到AMP脱氨酶,并优化重组菌的发酵培养基。【结果】对AMP脱氨酶基因进行了密码子优化后,构建了重组K.lactis GG799/p KLAC1-opt-AMPD,实现组成型表达,密码子优化后AMP脱氨酶酶活提高到586±50 U/m L。SDS-PAGE结果显示,纯化后的AMP脱氨酶为单一条带,蛋白大小约为60 k D。优化的发酵培养基为(g/L):葡萄糖40、蛋白胨20、酵母粉15、Na Cl 8、KCl 10、Mg SO4 2,30°C、200 r/min发酵120 h,酶活达到2 100±60 U/m L。【结论】实现了密码子优化后的腺苷酸脱氨酶基因在乳酸克鲁维酵母GG799内的组成型表达,为实现腺苷酸脱氨酶的重组高效表达和发酵生产进行了有益探索。  相似文献   

12.
In human, there are four AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) isozymes: E1, E2, M and L. Chromatographic, electrophoretic and immunological studies showed the existence of isozymes E1 and E2 in erythrocytes, isozyme M in muscle and isozyme L in liver and brain. The tissues such as heart, kidney and spleen contained isozymes E1, E2 and L. Isozymes E1, M and L were isolated as apparently homogeneous preparations. The three isozymes were all tetramers composed of identical subunits, but differing slightly in molecular weight; isozyme E1 showed a subunit molecular weight of 80 000, isozyme M 72 000 and isozyme L 68 000. They were immunologically different from one another. The antisera precipitated only the corresponding enzyme and did not precipitate any other isozyme. The three isozymes were also different in kinetic and regulatory properties. Isozyme E2 was very similar to isozyme E1 in immunological and kinetic properties, although isozyme E2 could be separated from isozyme E1 by phosphocellulose chromatography, and zonal electrophoresis.  相似文献   

13.
AMP deaminase isoforms from human skeletal muscle can be separated chromatographically [Kaletha, Spychała & Nowak (1987) Experientia 43, 440-443]. In adult tissue nearly all the AMP deaminase activity was eluted from phosphocellulose with 0.75 M-KCl (''adult'' isoform), and the remaining activity could be eluted with 2.0 M-KCl. Conversely, most of the AMP deaminase activity from 11-week-old fetal tissue was eluted from phosphocellulose with 2.0 M-KCl (''fetal'' isoform). In the present paper the kinetic and regulatory properties of AMP deaminase extracted from 11- and 16-week-old fetal skeletal muscle are reported. The two isoforms from 11-week-old human fetus differed distinctly in these properties. The ''fetal'' isoform had about 5-fold higher half-saturation constant (S0.5) value than the ''adult'' form. It was also more sensitive to the influence of some important regulatory ligands (ADP, ATP and Pi), and exhibited a different pH/activity profile. The ''adult'' isoform of AMP deaminase from fetal muscle and the enzyme from mature muscle possessed similar kinetic and regulatory properties. This isoform seems not to be subject to any major modifications during further ontogenesis. This is not true, however, for the ''fetal'' isoform. In the muscle of 16-week-old human fetus, the ''fetal'' isoform showed a peculiar, biphasic, type of substrate-saturation kinetics. This phenomenon may reflect appearance of the next, developmentally programmed, isoform of human skeletal-muscle AMP deaminase.  相似文献   

14.
AMP deaminase (AMPD) converts AMP to IMP and is a diverse and highly regulated enzyme that is a key component of the adenylate catabolic pathway. In this report, we identify the high affinity interaction between AMPD and phosphoinositides as a mechanism for regulation of this enzyme. We demonstrate that endogenous rat brain AMPD and the human AMPD3 recombinant enzymes specifically bind inositide-based affinity probes and to mixed lipid micelles that contain phosphatidylinositol 4,5-bisphosphate. Moreover, we show that phosphoinositides specifically inhibit AMPD catalytic activity. Phosphatidylinositol 4,5-bisphosphate is the most potent inhibitor, effecting pure noncompetitive inhibition of the wild type human AMPD3 recombinant enzyme with a K(i) of 110 nM. AMPD activity can be released from membrane fractions by in vitro treatment with neomycin, a phosphoinositide-binding drug. In addition, in vivo modulation of phosphoinositide levels leads to a change in the soluble and membrane-associated pools of AMPD activity. The predicted human AMPD3 sequence contains pleckstrin homology domains and (R/K)X(n)(R/K)XKK sequences, both of which are characterized phosphoinositide-binding motifs. The interaction between AMPD and phosphoinositides may mediate membrane localization of the enzyme and function to modulate catalytic activity in vivo.  相似文献   

15.
16.
AMP deaminase (AMPD) is a multigene family in higher eukaryotes whose three members encode tetrameric isoforms that catalyze the deamination of AMP to IMP. AMPD polypeptides share conserved C-terminal catalytic domains of approximately 550 amino acids, whereas divergent N-terminal domains of approximately 200-330 amino acids may confer isoform-specific properties to each enzyme. However, AMPD polypeptides are subject to limited N-terminal proteolysis during purification and subsequent storage at 4 degrees C. This presents a technical challenge to studies aimed at determining the structural and functional significance of these divergent sequences. This study describes the recombinant overexpression of three naturally occurring human AMPD2 proteins, 1A/2, 1B/2, and 1B/3, that differ by N-terminal extensions of 47-128 amino acids, resulting from the use of multiple promoters and alternative splicing events. A survey of protease inhibitors reveals that E-64 and leupeptin are able to maintain the subunit structure of each AMPD2 protein when they are included in extraction and storage buffers. Gel filtration chromatography of these three purified AMPD2 enzymes comprised of intact subunits reveals that each migrates faster than expected, resulting in observed molecular masses significantly greater than those predicted for native tetrameric structures. However, chemical crosslinking analysis indicates four subunits per AMPD2 molecule, confirming that these enzymes have a native tetrameric structure. These combined results suggest that AMPD2 N-terminal extensions may exist as extended structures in solution.  相似文献   

17.
AMPD1 genotype,relative fiber type composition, training status, and gender wereevaluated as contributing factors to the reported variation in AMPdeaminase enzyme activity in healthy skeletal muscle. Multifactorialcorrelative analyses demonstrate thatAMPD1 genotype has the greatest effecton enzyme activity. An AMPD1 mutantallele frequency of 13.7 and a 1.7% incidence of enzyme deficiency wasfound across 175 healthy subjects. Homozygotes for theAMPD1 normal allele have high enzymeactivities, and heterozygotes display intermediate activities. Whenexamined according to genotype, other factors were found to affectvariability as follows: AMP deaminase activity in homozygotes for thenormal allele exhibits a negative correlation with the relativepercentage of type I fibers and training status. Conversely, residualAMP deaminase activity in homozygotes for the mutant allele displays apositive correlation with the relative percentage of type I fibers.Opposing correlations in different homozygousAMPD1 genotypes are likely due torelative fiber-type differences in the expression ofAMPD1 andAMPD3 isoforms. Gender alsocontributes to variation in total skeletal muscle AMP deaminaseactivity, with normal homozygous and heterozygous women showing only85-88% of the levels observed in genotype-matched men.

  相似文献   

18.
AMP deaminase (AMPD) is essential for plant life, but the underlying mechanisms responsible for lethality caused by genetic and herbicide-based limitations in catalytic activity are unknown. Deaminoformycin (DF) is a synthetic modified nucleoside that is taken up by plant cells and 5'-phosphorylated into a potent transition state-type inhibitor of AMPD. Systemic exposure of Arabidopsis (Arabidopsis thaliana) seedlings to DF results in dose-dependent (150-450 nm) and time-dependent decreases in plant growth that are accompanied by 2- to 5-fold increases in the intracellular concentrations of all adenine ribonucleotides. No measurable rescue is observed with either hypoxanthine or xanthine (250 microm), indicating that downstream effects of AMPD inhibition, such as limitations in adenine-to-guanine nucleotide conversion or ureide synthesis, do not play important roles in DF toxicity. However, adenine (250 microm) acts synergistically with a nontoxic dose of DF (150 nm) to produce growth inhibition and adenine nucleotide pool expansion comparable to that observed with a toxic concentration of the herbicide alone (300 nm). Conversely, adenine alone (60-250 microm) has no measurable effects on these parameters. These combined results support the hypothesis that AMPD is the primary intracellular target for this class of herbicides and strongly suggest that adenine nucleotide accumulation is a metabolic trigger for DF toxicity. AMP binds to 14-3-3 proteins and can interrupt client interactions that appear to drive their distributions. Trichome subcellular localization of the phi isoform is disrupted within 8 to 24 h after seedlings are semisubmersed in a solution of DF (100 nm), further suggesting that disrupted 14-3-3 protein function plays a role in the associated herbicidal activity.  相似文献   

19.
Adenosine monophosphate deaminase (AMPD; EC 3.5.4.6) catalyses the hydrolysis of adenosine monophosphate (AMP) to commensurate amounts of inosine monophosphate (IMP) and ammonia. The production of AMP deaminase in Candida albicans was measured in Lee's medium grown cultures. The highest AMPD activity was observed at 24 h of growth. The enzyme had an optimum pH and temperature at 6-7 and 28 degrees C, respectively. This enzyme was inhibited under iron-limited growth conditions as well as by protease inhibitors. The AMPD of C. albicans showed a moderate increase in activity when cultures were grown in the presence of the divalent cations Mg2+, Ca2+, and Zn2+. Moreover, ADP, ATP, adenine, adenosine, deoxyribose and hypoxanthine increased the enzyme activity. Cultures grown in trypticase soy broth exhibited maximum AMPD activity compared with those grown in Sabouraud dextrose broth or Lee's medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号