首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The microstructure of trabecular bone is known to adapt its morphology in response to mechanical loads for achieving a biomechanical homeostasis. Based on this form–function relationship, previous investigators either simulated the remodeling of bone to predict the resulting density and architecture for a specific loading or retraced physiological loading conditions from local density and architecture. The latter inverse approach includes quantifying bone morphology using computed tomography and calculating the relative importance of selected load cases by minimizing the fluctuation of a tissue loading level metric. Along this concept, the present study aims at identifying an optimal, personalized, multiaxial load case at the distal section of the human radius using in vivo HR-pQCT-based isotropic, homogenized finite element (hFE) analysis. The dataset consisted of HR-pQCT reconstructions of the 20 mm most distal section of 21 human fresh-frozen radii. We simulated six different unit canonical load cases (FX palmar–dorsal force, FY ulnar–radial force, FZ distal–proximal force, MX moment about palmar–dorsal, MY moment about ulnar–radial, MZ moment about distal–proximal) using a simplified and efficient hFE method based on a single isotropic bone phase. Once we used a homogeneous mean density (shape model) and once the original heterogeneous density distribution (shape + density model). Using an analytical formulation, we minimized the deviation of the resulting strain tensors ε(x) to a hydrostatic compressive reference strain ε0, once for the 6 degrees of freedom (DOF) optimal (OPT) load case and for all individual 1 DOF load cases (FX, FY, FZ, MX, MY, MZ). All seven load cases were then extended in the nonlinear regime using the scaled displacements of the linear load cases as loading boundary conditions (MAX). We then compared the load cases and models for their objective function (OF) values, the stored energies and their ultimate strength using a specific torsor norm. Both shape and shape + density linear-optimized OPT models were dominated by a positive force in the z-direction (FZ). Transversal force DOFs were close to zero and mean moment DOFs were different depending on the model type. The inclusion of density distribution increased the influence and changed direction of MX and MY, while MZ was small in both models. The OPT load case had 12–15% lower objective function (OF) values than the FZ load case, depending on the model. Stored energies at the optimum were consistently 142–178% higher for the OPT load case than for the FZ load case. Differences in the nonlinear response maximum torsor norm ‖t‖ were heterogeneous, but consistently higher for OPT_MAX than FZ_MAX. We presented the proof of concept of an optimization procedure to estimate patient-specific loading conditions for hFE methods. In contrast to similar models, we included canonical load cases in all six DOFs and used a strain metric that favors hydrostatic compression. Based on a biomechanical analysis of the distal joint surfaces at the radius, the estimated load directions are plausible. For our dataset, the resulting OPT load case is close to the standard axial compression boundary conditions, usually used in HR-pQCT-based FE analysis today. But even using the present simplified hFE model, the optimized linear six DOF load case achieves a more homogeneous tissue loading and can absorb more than twice the energy than the standard uniaxial load case. The ultimate strength calculated with a torsor norm was consistently higher for the 6-DOF nonlinear model (OPT_MAX) than for the 1-DOF nonlinear uniaxial model (FZ_MAX). Defining patient-specific boundary conditions may decrease angulation errors during CT measurements and improve repeatability as well as reproducibility of bone stiffness and strength estimated by HR-pQCT-based hFE analysis. These results encourage the extension of the present method to anisotropic hFE models and their application to repeatability data sets to test the hypothesis of reduced angulation errors during measurement.

  相似文献   

2.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

3.
Vitamin E (VE) in soybean seed has value for foods, medicines, cosmetics, and animal husbandry. Selection for higher VE contents in seeds along with agronomic traits was an important goal for many soybean breeders. In order to map the loci controlling the VE content, F5-derived F6 recombinant inbred lines (RILs) were advanced through single-seed-descent (SSD) to generate a population including 144 RILs. The population was derived from a cross between ‘OAC Bayfield’, a soybean cultivar with high VE content, and ‘Hefeng 25’, a soybean cultivar with low VE content. A total of 107 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. Seed VE contents were analyzed by high performance liquid chromatography for multiple years and locations (Harbin in 2007 and 2008, Hulan in 2008 and Suihua in 2008). Four QTL associated with α-Toc (on four linkage groups, LGs), eight QTL associated with γ-Toc (on eight LGs), four QTL associated with δ-Toc (on four LGs) and five QTL associated with total VE (on four LGs) were identified. A major QTL was detected by marker Satt376 on linkage group C2 and associated with α-Toc (0.0012 > P > 0.0001, 5.0% < R 2 < 17.0%, 25.1 < α-Toc < 30.1 μg g−1), total VE (P < 0.0001, 7.0% < R 2 < 10.0%, 118.2 < total VE < 478.3 μg g−1). A second QTL detected by marker Satt286 on LG C2 was associated with γ-Toc (0.0003 > P > 0.0001, 6.0% < R 2 < 13.0%, 141.5 < γ-Toc < 342.4 μg g−1) and total VE (P < 0.0001, 2.0% < R 2 < 9.0%, 353.9 < total VE < 404.0 μg g−1). Another major QTL was detected by marker Satt266 on LG D1b that was associated with α-Toc (0.0002 > P > 0.0001, 4.0% < R 2 < 6.0%, 27.7 < α-Toc < 43.7 μg g−1) and γ-Toc (0.0032 > P > 0.0001, 3.0% < R 2 < 10.0%, 69.7 < γ-Toc < 345.7 μg g−1). Since beneficial alleles were all from ‘OAC Bayfield’, it was concluded that these three QTL would have great potential value for marker assisted selection for high VE content.  相似文献   

4.
Soybean [Glycine max (L.) Merr.] cultivars varied in their resistance to different populations of the soybean cyst nematode (SCN), Heterodera glycines, called HG Types. The rhg1 locus on linkage group G was necessary for resistance to all HG types. However, the loci for resistance to H. glycines HG Type 1.3- (race 14) and HG Type 1.2.5- (race 2) of the soybean cyst nematode have varied in their reported locations. The aims were to compare the inheritance of resistance to three nematode HG Types in a population segregating for resistance to SCN and to identify the underlying quantitative trait loci (QTL). ‘Hartwig’, a soybean cultivar resistant to most SCN HG Types, was crossed with the susceptible cultivar ‘Flyer’. A total of 92 F5-derived recombinant inbred lines (RILs; or inbred lines) and 144 molecular markers were used for map development. The rhg1 associated QTL found in earlier studies were confirmed and shown to underlie resistance to all three HG Types in RILs (Satt309; HG Type 0, P = 0.0001 R 2 = 22%; Satt275; HG Type 1.3, P = 0.001, R 2 = 14%) and near isogeneic lines (NILs; or iso-lines; Satt309; HG Type 1.2.5-, P = 0.001 R 2 = 24%). A new QTL underlying resistance to HG Type 1.2.5- was detected on LG D2 (Satt574; P = 0.001, R 2 = 11%) among 14 RILs resistant to the other HG types. The locus was confirmed in a small NIL population consisting of 60 plants of ten genotypes (P = 0.04). This QTL (cqSCN-005) is located in an interval previously associated with resistance to both SDS leaf scorch from ‘Pyramid’ and ‘Ripley’ (cqSDS-001) and SCN HG Type 1.3- from Hartwig and Pyramid. The QTL detected will allow marker assisted selection for multigenic resistance to complex nematode populations in combination with sudden death syndrome resistance (SDS) and other agronomic traits.  相似文献   

5.
Soybean isoflavones are valued in certain medicines, cosmetics, foods and feeds. Selection for high-isoflavone content in seeds along with agronomic traits is a goal of many soybean breeders. The aim of the study was to identify the quantitative trait loci (QTL) underlying seed isoflavone content in soybean among seven environments in China. A cross was made between ‘Zhongdou 27’, a soybean cultivar with higher mean isoflavone content in the seven environments (daidzein, DZ, 1,865 μg g−1; genistein, GT, 1,614 μg g−1; glycitein, GC, 311 μg g−1 and total isoflavone, TI, 3,791 μg g−1) and ‘Jiunong 20’, a soybean cultivar with lower isoflavone content (DZ, 844 μg g−1; GT, 1,046 μg g−1; GC, 193 μg g−1 and TI, 2,061 μg g−1). Through single-seed-descent, 130 F5-derived F6 recombinant inbred lines were advanced. A total of 99 simple-sequence repeat markers were used to construct a genetic linkage map. Seed isoflavone contents were analyzed using high-performance liquid chromatography for multiple years and locations (Harbin in 2005, 2006 and 2007, Hulan in 2006 and 2007, and Suihua in 2006 and 2007). Three QTL were associated with DZ content, four with GT content, three with GC content, and five with TI content. For all QTL detected the beneficial allele was from Zhongdou 27. QTL were located on three (DZ), three (GC), four (GT) and five (TI) molecular linkage groups (LG). A novel QTL was detected with marker Satt144 on LG F that was associated with DZ (0.0014 > P > 0.0001, 5% < R 2 < 11%; 254 < DZ < 552 μg g−1), GT (0.0027 > P > 0.0001; 4% < R 2 < 9%; 262 < GT < 391 μg g−1), and TI (0.0011 > P > 0.0001; 4% < R 2 < 15%; 195 < TI < 871 μg g−1) across the various environments. A previously reported QTL on LG M detected by Satt540 was associated with TI across four environments and TI mean (0.0022 > P > 0.0001; 3% < R 2 < 8%; 182 < TI < 334 μg g−1) in China. Because both beneficial alleles were from Zhongdou 27, it was concluded that these two QTL would have the greatest potential value for marker-assisted selection for high-isoflavone content in soybean seed in China. G. Zeng, D. Li and Y. Han have equal contributions to the paper.  相似文献   

6.
N-alkylated polyamine analogues have potential as anticancer and antiparasitic drugs. However, their metabolism in the host has remained incompletely defined thus potentially limiting their utility. Here, we have studied the degradation of three different spermine analogues N,N′-bis-(3-ethylaminopropyl)butane-1,4-diamine (DESPM), N-(3-benzyl-aminopropyl)-N′-(3-ethylaminopropyl)butane-1,4-diamine (BnEtSPM) and N,N′-bis-(3-benzylaminopropyl)butane-1,4-diamine (DBSPM) and related mono-alkylated derivatives as substrates of recombinant human polyamine oxidase (APAO) and spermine oxidase (SMO). APAO and SMO metabolized DESPM to EtSPD [K m(APAO) = 10 μM, k cat(APAO) = 1.1 s−1 and K m(SMO) = 28 μM, k cat(SMO) = 0.8 s−1, respectively], metabolized BnEtSPM to EtSPD [K m(APAO) = 0.9 μM, k cat(APAO) = 1.1 s−1 and K m(SMO) = 51 μM, k cat(SMO) = 0.4 s−1, respectively], and metabolized DBSPM to BnSPD [K m(APAO) = 5.4 μM, k cat(APAO) = 2.0 s−1 and K m(SMO) = 33 μM, k cat(SMO) = 0.3 s−1, respectively]. Interestingly, mono-alkylated spermine derivatives were metabolized by APAO and SMO to SPD [EtSPM K m(APAO) = 16 μM, k cat(APAO) = 1.5 s−1; K m(SMO) = 25 μM, k cat(SMO) = 8.2 s−1; BnSPM K m(APAO) = 6.0 μM, k cat(APAO) = 2.8 s−1; K m(SMO) = 19 μM, k cat(SMO) = 0.8 s−1, respectively]. Surprisingly, EtSPD [K m(APAO) = 37 μM, k cat(APAO) = 0.1 s−1; K m(SMO) = 48 μM, k cat(SMO) = 0.05 s−1] and BnSPD [K m(APAO) = 2.5 μM, k cat(APAO) = 3.5 s−1; K m(SMO) = 60 μM, k cat(SMO) = 0.54 s−1] were metabolized to SPD by both the oxidases. Furthermore, we studied the degradation of DESPM, BnEtSPM or DBSPM in the DU145 prostate carcinoma cell line. The same major metabolites EtSPD and/or BnSPD were detected both in the culture medium and intracellularly after 48 h of culture. Moreover, EtSPM and BnSPM were detected from cell samples. Present data shows that inducible SMO parallel with APAO could play an important role in polyamine based drug action, i.e. degradation of parent drug and its metabolites, having significant impact on efficiency of these drugs, and hence for the development of novel N-alkylated polyamine analogues.  相似文献   

7.
Although research has been addressed at investigating the effect of specific loading regimes on bone response around the implant, a precise quantitative understanding of the local mechanical response close to the implant site is still lacking. This study was aimed at validating micro-CT-based finite element (μFE) models to assess tissue strains after implant placement in a rat tibia. Small implants were inserted at the medio-proximal site of 8 rat tibiae. The limbs were subjected to axial compression loading; strain close to the implant was measured by means of strain gauges. Specimen-specific μFE models were created and analyzed. For each specimen, 4 different models were created corresponding to different representations of the bone–implant interface: bone and implant were assumed fully osseointegrated (A); a low stiffness interface zone was assumed with thickness of 40 μm (B), 80 μm (C), and 160 μm (D). In all cases, measured and computational strains correlated highly (R 2 = 0.95, 0.92, 0.93, and 0.95 in A, B, C, and D, respectively). The averaged calculated strains were 1.69, 1.34, and 1.15 times higher than the measured strains for A, B, and C, respectively, and lower than the experimental strains for D (factor = 0.91). In conclusion, we demonstrated that specimen-specific FE analyses provide accurate estimates of peri-implant bone strains in the rat tibia loading model. Further investigations of the bone-implant interface are needed to quantify implant osseointegration.  相似文献   

8.
An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R ϕ R −ϕ}, corresponding to a propagator U RF = exp(−i4ϕI z), where ϕ = πν/N and R is typically a pulse that rotates the nuclear spins through 180° about the x-axis. In this study, broadband, phase-modulated 180° pulses of constant amplitude were employed as the initial ‘R’ element and the phase-modulation profile of this ‘R’ element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13C–13C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of 15N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R d), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R d values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R d values ranged from 0.9 μmol 100 g−1 h−1 (lysine) to 22.1 μmol 100 g−1 h−1 (threonine) with most values falling between 2 and 6 μmol 100 g−1 h−1. There was a significant correlation between R d and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.  相似文献   

10.
Layers of rabbit corneal endothelial cells were cultured on permeable inserts. We characterized the diffusional permeability of the cell layer to nonelectrolyte and charged molecules and compared the diffusional and filtration permeabilities of the paracellular and transcellular pathways. We determined the rates of diffusion of 3H- and 14C-labeled nonelectrolyte test molecules and estimated the equivalent pore radius of the tight junction. Negatively charged molecules permeate slower than neutral molecules, while positively charged molecules permeate faster. Palmitoyl-dl-carnitine, which opens tight junctions, caused an increase of permeability and equivalent pore radius. Diffusional water permeability was determined with 3H-labeled water; the permeabilities of the tight junction and lateral intercellular space were calculated using tissue geometry and the Renkin equation. The diffusional permeability (P d ) of the paracellular pathway to water is 0.57 μm s−1 and that of the transcellular path is 2.52 μm s−1. From the P d data we calculated the filtration permeabilities (P f ) for the paracellular and transcellular pathways as 41.3 and 30.2 μm s−1, respectively. In conclusion, the movement of hydrophilic molecules through tight junctions corresponds to diffusion through negatively charged pores (r = 2.1 ± 0.35 nm). The paracellular water permeability represents 58% of the filtration permeability of the layer, which points to that route as the site of sizable water transport. In addition, we calculated for NaCl a reflection coefficient of 0.16 ≤ σNaCl ≤ 0.33, which militates against osmosis through the junctions and, hence, indirectly supports the electro-osmosis hypothesis.  相似文献   

11.
Measuring light, temperature, soil moisture, and growth provides a better understanding of net ecosystem production (NEP), ecosystem respiration (R eco), and their response functions. Here, we studied the variations in NEP and R eco in a grassland dominated by a perennial warm-season C4 grass, Zoysia japonica. We used the chamber method to measure NEP and R eco from August to September 2007. Biomass and leaf area index (LAI) were also measured to observe their effects on NEP and R eco. Diurnal variations in NEP and R eco were predicted well by light intensity (PPFD) and by soil temperature, respectively. Maximum NEP (NEPmax) values on days of year 221, 233, 247, and 262, were 2.44, 2.55, 3.90, and 4.17 μmol m−2 s−1, respectively. Throughout the growing period, the apparent quantum yield (α) increased with increasing NEPmax that ranged from 0.0154 to 0.0515, and NEP responded to the soil temperature changes by 44% and R eco changes by 48%, and R eco responded from 88 to 94% with the soil temperature diurnally. NEP’s light response and R eco’s temperature response were affected by soil water content; more than 27% of the variation in NEP and 67% of the variation in R eco could be explained by this parameter. NEP was strongly correlated with biomass and LAI, but R eco was not, because environmental variables affected R eco more strongly than growth parameters. Using the light response of NEP, the temperature response of R eco, and meteorological data, daily NEP and R eco were estimated at 0.67, 0.81, 1.17, and 1.56 g C m−2, and at 2.88, 2.50, 3.51, and 3.04 g C m−2, respectively, on days of year 221, 233, 247, and 262. The corresponding daily gross primary production (NEP + R eco) was 3.5, 3.3, 4.6, and 4.6 g C m−2.  相似文献   

12.
Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L−1 as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h and at the batch culture was μ = 1.13 h in the exponential period and μ = 0.31 h−1 in the stationary period. In the fed-batch mode was μ = 1.102 h−1 for 6 h with inoculation and declined to μ = 0.456 h−1 with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h−1. The number of viable cells was 6.01 × 1012 cfu L−1 at the batch culture, but increased to 1.15 × 1014 cfu L−1 at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40°C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30–40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.  相似文献   

13.
Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 μl l−1, showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 μl l−1 of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days’ exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants.  相似文献   

14.
The PDZ domain is an interaction motif that recognizes and binds the C-terminal peptides of target proteins. PDZ domains are ubiquitous in nature and help assemble multiprotein complexes that control cellular organization and signaling cascades. We present an optimized energy function to predict the binding free energy (ΔΔG) of PDZ domain/peptide interactions computationally. Geometry-optimized models of PDZ domain/peptide interfaces were built using Rosetta, and protein and peptide side chain and backbone degrees of freedom are minimized simultaneously. Using leave-one-out cross-validation, Rosetta’s energy function is adjusted to reproduce experimentally determined ΔΔG values with a correlation coefficient of 0.66 and a standard deviation of 0.79 kcal mol−1. The energy function places an increased weight on hydrogen bonding interactions when compared to a previously developed method to analyze protein/protein interactions. Binding free enthalpies (ΔΔH) and entropies (ΔS) are predicted with reduced accuracies of R = 0.60 and R = 0.17, respectively. The computational method improves prediction of PDZ domain specificity from sequence and allows design of novel PDZ domain/peptide interactions.  相似文献   

15.
Present study aims at estimation and validation of net primary productivity (NPP) using production efficiency model (PEM), and its possible relationship with tree diversity. The PEM estimates NPP, based on light use efficiency (LUE) and intercepted photosynthetically active radiation (IPAR). Weighted average LUE varied between 0.02 gC/μmol/m2 of PAR (Mixed forest (miscellaneous)) to 0.08 gC/μmol/m2 of PAR (Acacia forest), in growing phase (GP), and 0.0008 gC/μmol/m2 of PAR (Boswellia mixed forest) to 0.023 gC/μmol/m2 of PAR (Acacia forest) during the senescent phase (SP). The average weighted LUE for tropical dry and Moist deciduous forest (MDF) in GP were 0.05 gC/μmol/m2 of PAR and 0.03 gC/μmol/m2 of PAR, respectively. The average IPAR for different forest types was 2079.58 μmol/m2/s during GP and 1510.58 μmol/m2/s during SP. The PEM based NPP varied between 0.58–275.78 gC/m2/year during GP and 0.43–74.34 gC/m2/year during SP. The PEM based NPP and conventional (ground based) NPP were related with R 2 of 0.55. The tree diversity and NPP relationship was observed with R 2 of 0.55 at the level of both plot and forest types.  相似文献   

16.
Methyl iso-butyl ketone (MIBK) is a widely used volatile organic compound (VOC) which is highly toxic in nature and has significant adverse effects on human beings. The present study deals with the removal of MIBK using biodegradation by an acclimated mixed culture developed from activated sludge. The biodegradation of MIBK is studied for an initial MIBK concentration ranging from 200–700 mg l−1 in a batch mode of operation. The maximum specific growth rate achieved is 0.128 h−1 at 600 mg l−1of initial MIBK concentration. The kinetic parameters are estimated using five growth kinetic models for biodegradation of organic compounds available in the literature. The experimental data found to fit well with the Luong model (R 2 = 0.904) as compared to Haldane model (R 2 = 0.702) and Edward model (R 2 = 0.786). The coefficient of determination (R 2) obtained for the other two models, Monod and Powell models are 0.497 and 0.533, respectively. The biodegradation rate found to follow the three-half-order kinetics and the resulting kinetic parameters are reported.  相似文献   

17.
Cell cultures of Cayratia trifolia (Vitaceae), a tropical lianas, were maintained in Murashige and Skoog’s medium containing 0.25 mg l−1 NAA, 0.2 mg l−1 kinetin and casein hydrolysate 250 mg l−1. Cell suspension cultures of C. trifolia accumulate stilbenes (piceid, resveratrol, viniferin, ampelopsin), which on elicitation by any of 500 μM salicylic acid, 100 μM methyl jasmonate, 500 μM ethrel and 500 mg l−1 yeast extract, added on the 7th day, were enhanced by 3- to 6-fold (5–11 mg l−1) by the 15th day.  相似文献   

18.
Osteoporosis and related bone fractures are an increasing global burden in our ageing society. Areal bone mineral density assessed through dual energy X-ray absorptiometry (DEXA), the clinically accepted and most used method, is not sufficient to assess fracture risk individually. Finite element (FE) modelling has shown improvements in prediction of fracture risk, better than aBMD from DEXA, but is not practical for widespread clinical use. The aim of this study was to develop an adaptive neural network (ANN)-based surrogate model to predict femoral neck strains and fracture loads obtained from a previously developed population-based FE model. The surrogate model performance was assessed in simulating two loading conditions: the stance phase of gait and a fall.The surrogate model successfully predicted strains estimated by FE (r2 = 0.90–0.98 for level gait load case, r2 = 0.92–0.96 for the fall load case). Moreover, an ANN model based on three measurements obtainable in clinics (femoral neck length (level gait) or maximum femoral neck diameter (fall), femoral neck bone mass, body weight) was able to give reasonable predictions (r2 = 0.84–0.94) for all of the strain metrics and the estimated femoral neck fracture load. Overall, the surrogate model has potential for clinical applications as they are based on simple measures of geometry and bone mass which can be derived from DEXA images, accurately predicting FE model outcomes, with advantages over FE models as they are quicker and easier to perform.  相似文献   

19.
The nutritional value and yield potential of US Western Shipping melon (USWS; Cucumis melo L.) could be improved through the introgression of genes for early fruit maturity (FM) and the enhancement of the quantity of β-carotene (QβC) in fruit mesocarp (i.e., flesh color). Therefore, a set of 116 F3 families derived from the monoecious, early FM Chinese line ‘Q 3-2-2’ (no β-carotene, white mesocarp) and the andromonoecious, late FM USWS line ‘Top Mark’ (possessing β-carotene, orange mesocarp) were examined during 2 years in Wisconsin, USA to identify quantitative trait loci (QTL) associated with FM and QβC. A 171-point F2–3 based map was constructed and used for QTL analysis. Three QTL associated with QβC were detected, which explained a significant portion of the observed phenotypic variation (flesh color; R 2 = 4.0–50.0%). The map position of one QTL (β-carM.E.9.1) was uniformly aligned with one carotenoid-related gene (Orange gene), suggesting its likely role in QβC in this melon population and putative relationship with the melon white flesh (wf) gene. Two major (FM.6.1 and FM.11.1; R 2 ≥ 20%) and one minor QTL (FM.2.1; R 2 = 8%) were found to be associated with FM. This map was then merged with a previous recombinant inbred line (RIL)-based map used to identify seven QTL associated with QβC in melon fruit. This consensus map [300 molecular markers (187 co-dominant melon and 14 interspecific; 10 LG)] provides a framework for the further dissection and cloning of published QTL, which will consequently lead to more effective trait introgression in melon.  相似文献   

20.
The purpose of the study was to determine the concentration of trace elements present in scalp hair sample of schizophrenic patients and to find out the relationship between trace elements level and nutritional status or socioeconomic factors. The study was conducted among 30 schizophrenic male patients and 30 healthy male volunteers. Patients were recruited from Bangabandhu Sheikh Mujib Medical University by random sampling. Hair trace element concentrations were determined by flame atomic absorption spectroscopy and analyzed by independent t test, Pearson’s correlation analysis, regression analysis, and analysis of variance (ANOVA). Mn, Zn, Ca, Cu, and Cd concentrations of schizophrenic patients were 3.8 ± 2.31 μg/gm, 171.6 ± 59.04 μg/gm, 396.23 ± 157.83 μg/gm, 15.40 ± 5.68 μg/gm, and 1.14 ± 0.89 μg/gm of hair sample, while those of control subjects were 4.4 ± 2.32 μg/gm, 199.16 ± 27.85 μg/gm, 620.9 ± 181.55 μg/gm, 12.23 ± 4.56 μg/gm, and 0.47 ± 0.32 μg/gm of hair sample, respectively. The hair concentration of Zn and Ca decreased significantly (p = 0.024; p = 0.000, respectively) and the concentration of Cu and Cd increased significantly (p = 0.021; p = 0.000, respectively) in schizophrenic patients while the concentration of Mn (p = 0.321) remain unchanged. Socioeconomic data reveals that most of the patients were poor, middle-aged and divorced. Mean body mass indices (BMIs) of the control group (22.26 ± 1.91 kg/m2) and the patient group (20.42 ± 3.16 kg/m2) were within the normal range (18.5−25.0 kg/m2). Pearson’s correlation analysis suggested that only Ca concentration of patients had a significant positive correlation with the BMI (r = 0.597; p = 0.000) which was further justified from the regression analysis (R 2 = 44%; t = 3.59; p = 0.002) and one-way ANOVA test (F = 3.62; p = 0.015). A significant decrease in the hair concentration of Zn and Ca as well as a significant increase in the hair concentration of Cu and Cd in schizophrenic patients than that of its control group was observed which may provide prognostic tool for the diagnosis and treatment of this disease. However, further work with larger population is suggested to examine the exact correlation between trace element level and the degree of disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号