共查询到20条相似文献,搜索用时 0 毫秒
1.
Schröder H 《The Journal of nutritional biochemistry》2007,18(3):149-160
The prevalence of obesity has grown to an alarming level of at least 300 million people worldwide. Additionally, a diabetes epidemic is underway, with an estimate of 217 million people with diabetes worldwide. There are many links between excessive body weight and type 2 diabetes, and one common and fundamental cause of both epidemics is an unhealthy diet. Research to identify and promote diets that protect individuals from obesity and type 2 diabetes is urgently needed. The Mediterranean diet, a concept developed in the 1950s, refers to dietary habits of individuals from the Mediterranean basin. The Mediterranean diet is an eating pattern that successfully combines pleasant taste and positive health effects. The Mediterranean diet does not stand for a homogenous and exclusive model among the Mediterranean basin population but rather represents a set of healthy dietary habits, including high consumption of vegetables and fresh fruits and the use of olive oil as the main source of fat. Evidence from epidemiological studies supports a protective effect of this dietary pattern on weight gain and the development of type 2 diabetes. Several mechanistic explanations link characteristic components of the Mediterranean diet with obesity and type 2 diabetes. This review will discuss potential mechanisms by which the Mediterranean diet protects individuals from both diseases. 相似文献
2.
3.
4.
MicroRNAs belong to a newly identified class of small non-coding RNAs that have been widely implicated in the fine-tuning of many physiological processes such as the pathogenesis of type 2 diabetes(T2D) and obesity.Microarray studies have highlighted an altered profile of miRNA expression in insulin target tissues in diabetic and obese models.Emerging evidences suggest that miRNAs play significant roles in insulin production,secretion and actions,as well as in diverse aspects of glucose homeostasis and adipocyte differentiation. The identification of tissue-specific miRNAs implicated in T2D and obesity might be useful for the future development of effective strategies for early diagnosis and therapeutic intervention of obesity-related medical complications. 相似文献
5.
The neurotransmitter serotonin is an important regulator of energy balance. In the brain, serotonergic fibres from midbrain raphe nuclei project to key feeding centres, where serotonin acts on specific receptors to modulate the activity of various downstream neuropeptide systems and autonomic pathways and thus affects ingestive behaviour and energy expenditure. Serotonin, released by intestinal enterochromaffin cells, also appears to regulate energy homeostasis through peripheral mechanisms. Serotonergic effects on energy balance lead to secondary effects on glucose homeostasis, based on a well-established link between obesity and insulin resistance. However, serotonergic pathways may also directly affect glucose homeostasis through regulation of autonomic efferents and/or action on peripheral tissues. Several serotonergic compounds have been evaluated for clinical use in the treatment of obesity and type 2 diabetes; results of these trials are discussed here. Finally, future directions in the elucidation of serotonergic metabolic regulation are discussed. 相似文献
6.
7.
8.
Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells in vivo 总被引:10,自引:0,他引:10
Glucose homeostasis depends on regulated changes in glucose transport in insulin-responsive tissues (e.g. muscle and adipose cells). This transport is mediated by at least two distinct glucose transporters: adipose-muscle and erythrocyte-brain. To understand the molecular basis for in vivo insulin resistance we investigated the effects of fasting and refeeding on the expression of these two glucose transporters in adipose cells and skeletal muscle. In vivo insulin resistance seen with fasting and hyperresponsiveness seen with refeeding influence glucose transporter expression in a transporter-specific and tissue-specific manner. In adipose cells only the adipose-muscle glucose transporter mRNA and protein decrease dramatically with fasting and increase above control levels with refeeding, changes that parallel effects on insulin-stimulated glucose transport. In contrast, in muscle expression of both glucose transporters increase with fasting and return to control levels with refeeding, also in accordance with changes in glucose uptake in vitro. Although expression of the adipose-muscle glucose transporter predicts the physiological response at the tissue level, factors in the hormonal/metabolic milieu appear to override its increased expression in muscle resulting in insulin-resistant glucose uptake in this tissue in vivo. 相似文献
9.
Y Seino T Yamamoto G Koh 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1992,200(2):210-213
In order to determine the role of insulin and glucose transporter gene expression in the development of diabetes in obesity, we examined insulin and GLUT2-liver type and GLUT4-muscle-fat type glucose transporter mRNA levels in obese and diabetic rats. Ventromedial hypothalamus-lesioned (VMH), Zucker fatty (ZF), and Wistar fatty (WF) rats were used as models. VMH and ZF rats are most frequently used as models for simple obesity. In contrast, WF rats, which have been established by transferring the fa gene of ZF rats to Wistar Kyoto rats, develop both obesity and diabetes. Pancreatic insulin content of VMH rats at 10 weeks after the operation and of ZF rats at 5 and 14 weeks of age was significantly higher than that of controls. On the other hand, insulin content of WF rats at 5 and 14 weeks of age was not significantly different from that of lean littermates. The insulin mRNA levels of VMH rats were increased progressively and were significantly higher than those in sham-operated animals at 4 and 10 weeks after the operation. In ZF rats, the insulin mRNA levels at 5 and 14 weeks of age were significantly higher than those of their lean littermates. In WF rats, by contrast, the insulin mRNA levels were similar to those of lean littermates at 5 and 14 weeks of age. The insulin mRNA levels of WF rats were about 40% of that of ZF rats at 14 weeks of age. On the other hand, at 14 weeks of age, the GLUT2 mRNA levels of liver were significantly higher in ZF and WF rats than those in their respective littermates, but not at 5 weeks of age. The GLUT4 mRNA levels of skeletal muscle in both ZF and WF rats were not significantly different from those of controls. It is suggested that the inability of WF rats to augment insulin gene expression in response to a large demand for insulin is associated with the occurrence of diabetes, and that the activation of GLUT2 mRNA without the activation of GLUT4 mRNA is common to obesity with and without diabetes. 相似文献
10.
Martin Gulliford 《BMJ (Clinical research ed.)》2008,336(7654):1139-1140
11.
2-Deoxyglucose and were used to assess endotoxin-induced changes in glucose transport in rat adipocytes. 6 h after Escherichia coli endotoxin injection insulin-stimulated 2-deoxyglucose uptake was significantly depressed (), phosphorylation of 2-deoxyglucose was seemingly unimpaired; basal 3-methylglucose entry was significantly increased, insulin-stimulated uptake was unaltered. Insulin significantly reduced in control and endotoxin-treated cells. Cytochalasin B-insensitive uptake of both 2-deoxyglucose and 3-methylglucose, a small fraction of total transport, increased significantly in endotoxic cells. Endotoxin reduced spermine- and insulin-stimulated 2-deoxyglucose uptake to a similar extent. Results are consistent with the hypotheses that (1) a site of endotoxin-induced insulin resistance is at the cell membrane level and may reflect a decrease in number or activity of effective carrier units, rather than alterations in affinity, (2) endotoxin does not compromise the hexokinase system, (3) the cell membrane-localized effect of endotoxin on hexose transport is not necessarily mediated by the insulin receptor and (4) the entry of 2-deoxyglucose and 3-methylglucose may involve two separate transport systems. 相似文献
12.
13.
14.
Background
Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM.Methodology/Principal Findings
Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients.Conclusion
Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile. 相似文献15.
Insulin resistance, characterized by an inexorable decline in skeletal muscle glucose utilization and/or an excessive hepatic glucose production, constitutes a major pathogenic importance in a cluster of clinical disorders including diabetes mellitus, hypertension, dyslipidemia, central obesity and coronary artery disease. A novel concept suggests that heightened state of oxidative stress during diabetes contributes, at least in part, to the development of insulin resistance. Several key predictions of this premise were subjected to experimental testing using Goto-Kakizaki (GK) rats as a genetic animal model for non-obese type II diabetes. Euglycemic-hyperinsulinemic clamp studies with an insulin infusion index of 5 mU/kg bw/min were used to measure endogenous glucose production (EGP), glucose infusion rate (GIR), glucose disposal rate (GDR) and skeletal muscle glucose utilization index (GUI). Moreover, the status of oxidative stress as reflected by the urinary levels of isoprostane and protein carbonyl formation were also assessed as a function of diabetes. Post-absorptive basal EGP and circulating levels of insulin, glucose and free fatty acid (FFA) were elevated in GK rats, compared to their corresponding control values. In contrast, steady state GIR and GDR of the hyperglycemic/hyperinsulinemic animals were reduced, concomitantly with impaired insulin's ability to suppress EGP. Insulin stimulated [3H]-2-deoxyglucose (2-DG) uptake (a measure of glucose transport activity) by various types of skeletal muscle fibers both in vivo and in vitro (isolated muscle, cultured myoblasts) was diminished in diabetic GK rats. This diabetes-related suppression of skeletal muscle glucose utilization was associated with a decrease in insulin's ability to promote the phosphorylation of tyrosine residues of insulin receptor substrate-1 (IRS-1). Similarly, the translocation of GLUT-4 from intracellular compartment to plasma membrane in response to insulin was also reduced in these animals. Oxidative stress-based markers (e.g. urinary isoprostane, carbonyl-bound proteins) were elevated as a function of diabetes. Nullification of the heightened state of oxidative stress in the GK rats with alpha-lipoic acid resulted in a partial amelioration of the diabetes-related impairment of the in vivo and in vitro insulin actions. Collectively, the above data suggest that 1) insulin resistance in GK rats occurs at the hepatic and skeletal muscle levels, 2) muscle cell glucose transport exhibited a blunted response to insulin and it is associated with a major defect in key molecules of both GLUT-4 trafficking and insulin signaling pathways, 3) skeletal muscle insulin resistance in GK rats appears to be of genetic origin and not merely related to a paracrine or autocrine effect, since this phenomenon is also observed in cultured myoblasts over several passages and finally heightened state of oxidative stress may mediate the development of insulin resistance during diabetes. 相似文献
16.
To reveal the importance of lysoposphatidylcholine (LPC) in patients with Type 2 diabetes (DM), LPC in low density lipoprotein (LDL) was determined by high performance liquid chromatography in 38 patients with Type 2 DM and 31 age and sex-matched non-diabetic controls. Stearoyl LPC (SLPC) and palmitoyl LPC (PLPC) were detected in LDL. The contents of both LPCs per gram protein in LDL were increased in diabetic patients compared with the non-diabetics (1.99+/-0.94mg SLPC and 3.02+/-1.81 mg PLPC vs 1.47+/-0.57 mg SLPC and 2.30+/-0.83 mg PLPC, mean +/- SD, p < 0.01 and p < 0.05, respectively). PLPC showed a weak correlation with the levels of fasting plasma glucose (FPG) and HbA1c (r=0.27 and r=0.33, p < 0.05 and p < 0.01, respectively). The diabetic patients with macroangiopathy showed higher levels of PLPC per gram protein compared to those without macroangiopathy (4.60+/-2.61 mg vs 2.53+/1.15 mg, respectively, p < 0.05). The LPC molecular species may participate in the atherogenicity of LDL in patients with Type 2 diabetes. 相似文献
17.
Nicole Schade Charlotte Esser Jean Krutmann 《Photochemical & photobiological sciences》2005,4(9):699-708
About 30 years ago, the discovery of the connection between UV radiation and the immune system triggered the field of photoimmunology. In that time, many aspects were studied, and a complex picture emerged. UV absorption results in multi-tiered molecular and cellular UV radiation-induced events, eventually affecting the immune system. The shorter wavelengths of the UV spectrum, i.e. UVB appear to be the most critical players for impairing immune reactions. This review summarizes and discusses UVB radiation-induced effects on the skin, considering the primary efferent molecular events following energy absorption of UVB radiation, ending with the various afferent cellular changes, such as induction of regulatory T cells. 相似文献
18.
AIMS AND METHODS: Study results still conflict on the contribution of diurnal blood glucose (BG) values to Hb (A1c) in type 2 diabetes. We investigated the relationship between Hb (A1c) and diurnal BG obtained under standardized conditions - before breakfast, two hours after breakfast, before lunch, two hours after lunch, before dinner, two hours after dinner, and at 10 PM, 12 midnight and 3 AM in 68 type 2 diabetic patients before and after optimizing glycemic control. The areas under the curve above fasting BG (AUC1) and above 5.6 mmol/l (AUC2) were calculated for further evaluation. Hb (A1c) was measured at baseline and after a mean of 89 (74 to 108) days. RESULTS: Each BG value at baseline and after treatment optimization significantly correlated with baseline and follow-up Hb (A1c), respectively. The pre-breakfast BG showed the closest correlation with Hb (A1c). The relative contribution of postprandial BG concentrations (AUC1) to overall hyperglycemia (AUC2) decreased with poorer glycemic control. However, treatment optimization mainly resulted in improved blood glucose values in patients with the poorest glycemic control at baseline. Multiple regression analysis demonstrated that fasting (AUC2-AUC1) and postprandial (AUC1) hyperglycemia independently determined Hb (A1c) or the change in Hb (A1c) after treatment optimization. CONCLUSIONS: Our findings indicate that intensive blood glucose monitoring during fasting and postprandial states is important for glycemic control, and is therefore an essential part of good clinical practice. 相似文献
19.
20.
Susceptibility to type 1 diabetes (T1D) is determined by complex interactions between several genetic loci and environmental factors. Alleles at the human leukocyte antigen (HLA) locus explain up to 50% of the familial clustering of T1D, and the remainder is contributed to by multiple loci, of which only four were known until recently. First-stage results of genome-wide association (GWA) studies performed with high-density genotyping arrays have already produced four novel loci and the promise that, with the completion of the second stage of the GWA studies, most of the genetic basis of T1D will be known. We will review what is known to date about the mechanisms of genetic susceptibility to T1D, with special emphasis on possible diagnostic and therapeutic applications of these recent genetic findings. 相似文献