首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Blue seed-coats ofOphiopogon jaburan have been found to contain two kinds of anthocyanins. By means of paper chromatographic and spectral analyses, one present as a minor component was determined to be delphinidin 3-rutinoside, tulipanin, and the major component, a new anthocyanin, was identified as petunidin 3-O-β-(2G-glucosylrutinoside)-5′-glucoside, which the authors have named “ophionin”. Both anthocyanins were also present in the blue seed-coasts ofO. japonicus andO. planiscapus.  相似文献   

2.
Bioconversion of quercetin glucosides using four generally recognized as safe (GRAS) organisms (Aspergillus oryzae, Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) was evaluated by measuring changes in the levels of quercetin compounds of onion. Of the four organisms, S. cerevisiae increased the content of quercetin-3-O-β-d-glucoside (III; isoquercitrin) and quercetin (IV), whereas decreasing quercetin-3,4′-O-β-d-glucoside (I) and quercetin-4′-O-β-d-glucoside (II). Also, S. cerevisiae converted authentic compound I to III, and II to IV, respectively. These results suggest that S. cerevisiae can be used to increase the levels of isoquercitrin (III), the most bioavailable quercetin compound in onion.  相似文献   

3.
Kogawa K  Kato N  Kazuma K  Noda N  Suzuki M 《Planta》2007,226(6):1501-1509
A UDP-glucose: anthocyanin 3′,5′-O-glucosyltransferase (UA3′5′GT) (EC 2.4.1.-) was purified from the petals of Clitoria ternatea L. (Phaseoleae), which accumulate polyacylated anthocyanins named ternatins. In the biosynthesis of ternatins, delphinidin 3-O-(6″-O-malonyl)-β-glucoside (1) is first converted to delphinidin 3-O-(6″-O-malonyl)-β-glucoside-3′-O-β-glucoside (2). Then 2 is converted to ternatin C5 (3), which is delphinidin 3-O-(6″-O-malonyl)-β-glucoside-3′,5′-di-O-β-glucoside. UA3′5′GT is responsible for these two steps by transferring two glucosyl groups in a stepwise manner. Its substrate specificity revealed the regioselectivity to the anthocyanin′s 3′- or 5′-OH groups. Its kinetic properties showed comparable k cat values for 1 and 2, suggesting the subequality of these anthocyanins as substrates. However, the apparent K m value for 1 (3.89 × 10−5 M), which is lower than that for 2 (1.38 × 10−4 M), renders the k cat/K m value for 1 smaller, making 1 catalytically more efficient than 2. Although the apparent K m value for UDP-glucose (6.18 × 10−3 M) with saturated 2 is larger than that for UDP-glucose (1.49 × 10−3 M) with saturated 1, the k cat values are almost the same, suggesting the UDP-glucose binding inhibition by 2 as a product. UA3′5′GT turns the product 2 into a substrate possibly by reversing the B-ring of 2 along the C2-C1′ single bond axis so that the 5′-OH group of 2 can point toward the catalytic center. K. Kogawa, N. Kato, K. Kazuma, and N. Noda contributed equally to this work.  相似文献   

4.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

5.
The gene encoding an α-l-arabinofuranosidase that could biotransform ginsenoside Rc {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-[α-l-arabinofuranosyl-(1–6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to ginsenoside Rd {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} was cloned from a soil bacterium, Rhodanobacter ginsenosidimutans strain Gsoil 3054T, and the recombinant enzyme was characterized. The enzyme (AbfA) hydrolyzed the arabinofuranosyl moiety from ginsenoside Rc and was classified as a family 51 glycoside hydrolase based on amino acid sequence analysis. Recombinant AbfA expressed in Escherichia coli hydrolyzed non-reducing arabinofuranoside moieties with apparent K m values of 0.53 ± 0.07 and 0.30 ± 0.07 mM and V max values of 27.1 ± 1.7 and 49.6 ± 4.1 μmol min−1 mg−1 of protein for p-nitrophenyl-α-l-arabinofuranoside and ginsenoside Rc, respectively. The enzyme exhibited preferential substrate specificity of the exo-type mode of action towards polyarabinosides or oligoarabinosides. AbfA demonstrated substrate-specific activity for the bioconversion of ginsenosides, as it hydrolyzed only arabinofuranoside moieties from ginsenoside Rc and its derivatives, and not other sugar groups. These results are the first report of a glycoside hydrolase family 51 α-l-arabinofuranosidase that can transform ginsenoside Rc to Rd.  相似文献   

6.
When Phanerochaete chrysosporium was grown with laminarin (a β-1,3/1,6-glucan) as the sole carbon source, a β-1,3-glucanase with a molecular mass of 36 kDa was produced as a major extracellular protein. The cDNA encoding this enzyme was cloned, and the deduced amino acid sequence revealed that this enzyme belongs to glycoside hydrolase family 16; it was named Lam16A. Recombinant Lam16A, expressed in the methylotrophic yeast Pichia pastoris, randomly hydrolyzes linear β-1,3-glucan, branched β-1,3/1,6-glucan, and β-1,3-1,4-glucan, suggesting that the enzyme is a typical endo-1,3(4)-β-glucanase (EC 3.2.1.6) with broad substrate specificity for β-1,3-glucans. When laminarin and lichenan were used as substrates, Lam16A produced 6-O-glucosyl-laminaritriose (β-d-Glcp-(1–>6)-β-d-Glcp-(1–>3)-β-d-Glcp-(1–>3)-d-Glc) and 4-O-glucosyl-laminaribiose (β-d-Glcp-(1–>4)-β-d-Glcp-(1–>3)-d-Glc), respectively, as one of the major products. These results suggested that the enzyme strictly recognizes β-d-Glcp-(1–>3)-d-Glcp at subsites −2 and −1, whereas it permits 6-O-glucosyl substitution at subsite +1 and a β-1,4-glucosidic linkage at the catalytic site. Consequently, Lam16A generates non-branched oligosaccharide from branched β-1,3/1,6-glucan and, thus, may contribute to the effective degradation of such molecules in combination with other extracellular β-1,3-glucanases.  相似文献   

7.
Zeng X  Sun Y  Ye H  Liu J  Uzawa H 《Biotechnology letters》2007,29(7):1105-1110
When α-d-GlcNAc-OC6H4NO2 -p and β-d-(6-sulfo)-GlcNAc-OC6H4NO2-p (2) were used as substrates, β-N-acetylhexosaminidase from Aspergillus oryzae transferred the β-d-(6-sulfo)-GlcNAc(unit from 2 to α-d-GlcNAc-OC6H4NO2 -p to afford β-d-(6-sulfo)-GlcNAc-(1→4)-α-d-GlcNAc-OC6H4NO2-p (3) in a yield of 94% based on the amount of donor, 2, added. β-d-(6-sulfo)-GlcNAc-(1→4)-α-d-Glc-OC6H4NO2-p (4) was obtained with α-d-Glc-OC6H4NO2 -p as acceptor in a similar manner. With a reaction mixture of 2 and β-d-GlcNAc-OC6H4NO2-p (1) in a molar ratio of 6:1, the enzyme mediated the transfer of β-d-GlcNAc from 1 to 2, affording disaccharide β-d-GlcNAc-(1→4)-β-(6-sulfo)-d-GlcNAc-OC6H4NO2-p (5) in a yield of 13% based on the amount of 1 added.  相似文献   

8.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

9.
A novel phosphorylase from Clostridium phytofermentans belonging to the glycoside hydrolase family (GH) 65 (Cphy1874) was characterized. The recombinant Cphy1874 protein produced in Escherichia coli showed phosphorolytic activity on nigerose in the presence of inorganic phosphate, resulting in the release of d-glucose and β-d-glucose 1-phosphate (β-G1P) with the inversion of the anomeric configuration. Kinetic parameters of the phosphorolytic activity on nigerose were k cat = 67 s−1 and K m = 1.7 mM. This enzyme did not phosphorolyze substrates for the typical GH65 enzymes such as trehalose, maltose, and trehalose 6-phosphate except for a weak phosphorolytic activity on kojibiose. It showed the highest reverse phosphorolytic activity in the reverse reaction using d-glucose as the acceptor and β-G1P as the donor, and the product was mostly nigerose at the early stage of the reaction. The enzyme also showed reverse phosphorolytic activity, in a decreasing order, on d-xylose, 1,5-anhydro-d-glucitol, d-galactose, and methyl-α-d-glucoside. All major products were α-1,3-glucosyl disaccharides, although the reaction with d-xylose and methyl-α-d-glucoside produced significant amounts of α-1,2-glucosides as by-products. We propose 3-α-d-glucosyl-d-glucose:phosphate β-d-glucosyltransferase as the systematic name and nigerose phosphorylase as the short name for this Cphy1874 protein.  相似文献   

10.
The cellobiose 2-epimerase from Ruminococcus albus (RaCE) catalyzes the epimerization of cellobiose and lactose to 4-O-β-d-glucopyranosyl-d-mannose and 4-O-β-d-galactopyranosyl-d-mannose (epilactose). Based on the sequence alignment with N-acetyl-d-glucosamine 2-epimerases of known structure and on a homology-modeled structure of RaCE, we performed site-directed mutagenesis of possible catalytic residues in the enzyme, and the mutants were expressed in Escherichia coli cells. We found that R52, H243, E246, W249, W304, E308, and H374 were absolutely required for the activity of RaCE. F114 and W303 also contributed to catalysis. These residues protruded into the active-site cleft in the model (α/α)6 core barrel structure.  相似文献   

11.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4′,6′-di-O-acetyl-2′,3′-di-O-alka(e)noyl)-β-d-mannopyranosyl]-d-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids.  相似文献   

12.
Streptomyces aureofaciens glucosidizes 1,2,4-trihydroxy-9,10-anthraquinone (purpurin) added to the cultivation medium to yield the corresponding 2-β-d-glucoside. The identity of the glucoside was demonstrated by comparing its physico-chemical properties with data of an authentic sample prepared synthetically. A further chemical glucosidation of the acetylated 2-β-d-glucoside gives rise to 2-(hepta-O-acetyl-β-gentiobiosyl)-4-(tetra-O-acetyl-β-d-glucopyranosyl) purpurin. All the derivatives are immunoactive.  相似文献   

13.
Enzymatic 5′-monophosphorylation and 5′-phosphatidylation of a number of β-l- and β-d-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5′-hydroxyl group of nucleoside; the second was the phospholipase d (PLD)-catalyzed transphosphatidylation of l-α-lecithin with a series of β-l- and β-d-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some β-l-nucleosides displayed similar or even higher substrate activity compared to the β-d-enantiomers.  相似文献   

14.
5′-O-β-d-Galactosyl-floxuridine, a potential novel prodrug, was synthesized with a yield of 75% through β-galactosidase-catalyzed transgalactosylation. This enzyme displayed absolute regioselectivity toward the 5′-position of floxuridine. For the reaction, the optimal conditions were pH 6.5 at 45°C for 60 h with floxuridine to o-nitrophenyl-β-d-galactoside at 2:1 (mol/mol). Under these conditions, the initial reaction rate and the maximum yield were 0.28 mM h−1 and 75%, respectively.  相似文献   

15.
Seven flavonol glycosides were isolated from the leaves ofT. apetalon. They were identified chromatographically and spectrally to be: quercetin/kaempferol 3-O-α-arabinopyranosyl-(1→6)-β-galactopyranoside (TQ and TK), quercetin/kaempferol 3-O-[2‴-O-acetyl-α-arabinopyranosyl]-(1→6)-β-galactopyranoside (TAQ and TAK), quercetin 3-O-β-glucoside (ISQ), isorhamnetin 3-O-α-arabinopyranosyl-(1→6)-β-galactopyranoside (TI) and isorhamnetin 3-O-[2‴-O-acetyl-α-arabinopyranosyl]-(1→6)-β-galactopyranoside (TAI). TQ, TAQ, TI and TAI were major constituents. This is the first report on two new isorhamnetin-type glycosides, TI and TAI. The seven flavonol glycosides identical to those ofT. apetalon were isolated and identified in the leaves ofT. kamtschaticum; TQ and TAQ were also major components, but TI and TAI were only minor components. TI and TAI were not detected in the leaves ofT. tschonoskii. These leaf-flavonoid patterns were discussed from a chemosystematic point of view. Part 3 in the series “Studies of the flavonoids of the genusTrillium”. For Part 2 see Yoshitamaet al., (1997) J. Plant Res.110: 379–381.  相似文献   

16.
Structure of the O-specific polysaccharide chain of the lipopolysaccharide (LPS) of Shewanella japonica KMM 3601 was elucidated. The initial and O-deacylated LPS as well as a trisaccharide representing the O-deacetylated repeating unit of the O-specific polysaccharide were studied by sugar analysis along with 1H and 13C NMR spectroscopy. The polysaccharide was found to contain a rare higher sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-talo-non-2-ulosonic acid (a derivative of 4-epilegionaminic acid, 4eLeg). The following structure of the trisaccharide repeating unit was established: →4)-α-4eLegp5Ac7Ac-(2→4)-β-d-GlcpA3Ac-(1→3)-β-d-GalpNAc-(1→.  相似文献   

17.
A new acetylated flavonol glycoside: patuletin 3-O-[5′″-O-feruloyl-β-D-apiofuransyl (1′″→2′′)-β-D-glucopyranoside] (2), together with a known patuletin 3-O-β-D-glucopyranoside (1) were isolated from the aerial part of Artiplex littoralis L. (Chenopodiacease). Their structures were elcidated by acid hydrolysis and spectroscopic methods including UV, 1H, 13C NMR and ESI-MS for both compounds, additionally 2D-NMR, HSQC, HMBC experiments were performed for 2.  相似文献   

18.
Plant Growth Inhibitory Compounds from Aqueous Leachate of Wheat Straw   总被引:3,自引:0,他引:3  
When seedlings of lettuce, cress, rice and wheat were incubated with the leachate of wheat straw, the roots growth of lettuce and garden cress were particularly inhibited. The leachate of wheat straw (100 g eq./l) showed 80.5 and 79.4% inhibition for lettuce and cress roots, respectively. The inhibitory activity was stronger as the concentration of wheat straw leachate was greater. This result indicates that allelochemical(s) inhibiting the roots growth of lettuce and cress are leached from the wheat straw into the water. Two potent compounds were isolated from the leachate of the wheat straw and identified as syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan by spectral analyses. Syringoylglycerol 9-O-β-d-glucopyranoside inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 10.0 μM, respectively. On the other hand, l-tryptophan inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 1.0 μM, respectively. The content of syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan in the leachate of wheat straw (100 g eq./l) was 18.4 ± 0.7 and 6.2 ± 0.6 μM, respectively. Syringoylglycerol 9-O-β-d-glucopyranoside (18.4 μM) showed 21.5 and 13.5% inhibition in the lettuce and cress roots assay, respectively. On the other hand, 6.2 μM of l-tryptophan showed 47.5 and 35.0% inhibition in the lettuce and cress roots assay, respectively. These results suggested that l-tryptophan may be a major contributor to the allelopathy in aqueous leachate of wheat straw and syringoylglycerol 9-O-β-d-glucopyranoside may be a minor contributor.  相似文献   

19.
A β-d-glucan obtained from Aureobasidium pullulans (AP-FBG) exhibits various biological activities: it exhibits antitumour and antiosteoporotic effects and prevents food allergies. An unambiguous structural characterisation of AP-FBG is still awaited. The biological effects of β-d-glucan are known to depend on its primary structures, conformation, and molecular weight. Here, we elucidate the primary structure of AP-FBG by NMR spectroscopy, and evaluate its biological activities. Its structure was shown to comprise a mixture of a 1-3-β-d-glucan backbone with single 1-6-β-d-glucopyranosyl side-branching units every two residues (major structure) and a 1-3-β-d-glucan backbone with single 1-6-β-d-glucopyranosyl side-branching units every three residues (minor structure). Furthermore, this β-d-glucan exhibited immunostimulatory effects such as the accumulation of immune cells and priming effects against enterobacterium. To our knowledge, 1-3-β-glucans like AP-FBG with such a high number of 1-6-β-glucopyranosyl side branching have a unique structure; nevertheless, many 1-3-β-glucans were isolated from various sources, e.g. fungi, bacteria, and plants.  相似文献   

20.
[(4-methoxy-4(3-β-d-galactose-4-chlorophenyl)]spiro[1,2-dioxetane-3-1,3-tricyclo[7.3.1.02,7]tridec-2,7-ene] (“sβ-Gal 102”) and sodium [4-methoxy-4(3-β-d-glucuronic acid-4-chlorophenyl)]spiro[1,2-dioxetane-3-1,3-tricyclo[7.3.1.02,7]tridec-2,7-ene] (“sβ-Glucor 102”) are carbohydrate-containing 1,2-dioxetane compounds that produce chemiluminescence upon enzymatic hydrolysis by β-d-galactosidase, and β-d-glucuronidase, respectively. In this study, we have characterized and validated a sensitive detection principle for viable Escherichia coli based on enzymatic cleavage of sβ-Gal 102 and sβ-Glucor 102 (“ColiLight II”). The proposed chemiluminescent assay was optimized with respect to analytical requirements including incubation time, temperature, pH, enzyme induction, and cell permeabilization. The sensitivity and specificity rates of the assay were tested on ten different bacterial genera. The assay was found to be representative based on low coefficients of variations for both accuracy and precision. The analysis time was less than 1 h and the analytical detection limit was 102 to 103 E. coli cells. In combination with membrane filtration and a brief resuscitation step of 4 h, the proposed assay was capable of detecting low concentrations of stressed E. coli in potable water (<30 CFU 100 ml−1). The proposed chemiluminescent enzyme assay may be used for assessing the metabolic activity of E. coli in oligotrophic environments and for early warning detection of low concentrations of E. coli in water for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号