首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho-type GTPases control many cytoskeletal rearrangements, but their regulation remains poorly understood. Here, we show that in S. cerevisiae, activation of the CDK Cdc28-Cln2 at bud emergence triggers relocalization of Cdc24, the GEF for Cdc42, from the nucleus to the polarization site, where it is stably maintained by binding to the adaptor Bem1. Locally activated Cdc42 then polarizes the cytoskeleton in a manner dependent on its effectors Bni1 and the PAK-like kinase Cla4. In addition, Cla4 induces phosphorylation of Cdc24, leading to its dissociation from Bem1 at bud tips, thereby ending polarized bud growth in vivo. Our results thus suggest a dynamic temporal and spatial regulation of the Cdc42 module: Cdc28-Cln triggers actin polarization by activating Cdc42, which in turn restricts its own activation via a negative feedback loop acting on its GEF Cdc24.  相似文献   

2.
Small GTP-binding proteins of the highly conserved Rho family act as molecular switches regulating cell signalling, cytoskeletal organization and vesicle trafficking in eukaryotic cells. Here we show that in the dimorphic plant pathogenic fungus Ustilago maydis deletion of either cdc42 or rac1 results in loss of virulence but does not interfere with viability. Cells deleted for cdc42 display a cell separation defect during budding. We have previously shown that the Rho-specific guanine nucleotide exchange factor (GEF) Don1 is required for cell separation in U. maydis. Expression of constitutive active Cdc42 rescues the phenotype of don1 mutant cells indicating that Don1 triggers cell separation by activating Cdc42. Deletion of rac1 affects cellular morphology and interferes with hyphal growth, whereas overexpression of wild-type Rac1 induces filament formation in haploid cells. This indicates that Rac1 is both necessary and sufficient for the dimorphic switch from budding to hyphal growth. Cdc42 and Rac1 share at least one common essential function because depletion of both Rac1 and Cdc42 is lethal. Expression of constitutively active Rac1(Q61L) is lethal and results in swollen cells with a large vacuole. The morphological phenotype, but not lethality is suppressed in cla4 mutant cells suggesting that the PAK family kinase Cla4 acts as a downstream effector of Rac1.  相似文献   

3.
The phytopathogenic basidiomycete Ustilago maydis displays a dimorphic switch between budding growth of haploid cells and filamentous growth of the dikaryon. In a screen for mutants affected in morphogenesis and cytokinesis, we identified the serine/threonine protein kinase Cla4, a member of the family of p21-activated kinases (PAKs). Cells, in which cla4 has been deleted, are viable but they are unable to bud properly. Instead, cla4 mutant cells grow as branched septate hyphae and divide by contraction and fission at septal cross walls. Delocalized deposition of chitinous cell wall material along the cell surface is observed in cla4 mutant cells. Deletion of the Cdc42/Rac1 interaction domain (CRIB) results in a constitutive active Cla4 kinase, whose expression is lethal for the cell. cla4 mutant cells are unable to induce pathogenic development in plants and to display filamentous growth in a mating reaction, although they are still able to secrete pheromone and to undergo cell fusion with wild-type cells. We propose that Cla4 is involved in the regulation of cell polarity during budding and filamentation.  相似文献   

4.
The dimorphic phytopathogenic fungus Ustilago maydis grows in its haploid phase by budding. Cytokinesis and separation of daughter cells are accomplished by the consecutive formation of two distinct septa. Here, we show that both septation events involve the dynamic rearrangement of septin assemblies from hourglass‐shaped collars into ring‐like structures. Using a chemical genetic approach we demonstrate that the germinal centre kinase Don3 triggers this septin reorganization during secondary septum formation. Although chemical inhibition of an analogue‐sensitive version of Don3 prevented septation, a stable septin collar was assembled at the presumptive septation site. Interestingly, the essential light chain of type II myosin, Cdc4, was already associated with this septin collar. Release of Don3 kinase inhibition triggered immediate dispersal of septin filaments and concomitant incorporation of Cdc4 into a contractile actomyosin ring, which also contained the F‐BAR domain protein Cdc15. Inhibition of actin polymerization or deletion of the cdc15 gene, did not affect assembly of the initial collar consisting of septin and myosin light chain. However, reassembly of septin filaments into a ring‐like structure was prevented in the absence of either F‐actin or Cdc15, indicating that septin ring formation in U. maydis depends on a functional contractile actomyosin ring.  相似文献   

5.
6.
KP4 is a virally encoded fungal toxin secreted by the P4 killer strain of Ustilago maydis. From our previous structural studies, it seemed unlikely that KP4 acts by forming channels in the target cell membrane. Instead, KP4 was proposed to act by blocking fungal calcium channels, as KP4 was shown to inhibit voltage-gated calcium channels in rat neuronal cells, and its effects on fungal cells were abrogated by exogenously added calcium. Here, we extend these studies and demonstrate that KP4 acts in a reversible manner on the cell membrane and does not kill the cells, but rather inhibits cell division. This action is mimicked by EGTA and is abrogated specifically by low concentrations of calcium or non-specifically by high ionic strength buffers. We also demonstrate that KP4 affects (45)Ca uptake in U. maydis. Finally, we show that cAMP and a cAMP analogue, N 6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate, both abrogate KP4 effects. These results suggest that KP4 may inhibit cell growth and division by blocking calcium-regulated signal transduction pathways.  相似文献   

7.
Septum formation is a crucial step of cytokinesis in fungi. In the basidiomycete Ustilago maydis, the germinal centre kinase Don3 triggers initiation of a secondary septum necessary for cell separation after cytokinesis. Here we show that oligomerization of Don3 via a putative coiled-coil domain is critical for secondary septum formation. Within the Don3 sequence we detected a characteristic C-terminal sequence motif (T-motif), which determines the subcellular localization of Don3 but is not required for regulation of cell separation. This motif defines a novel family of fungal protein kinases including Sid1p, an essential component of the septation initiation network (SIN) in Schizosaccharomyces pombe. Using the yeast two-hybrid system we isolated the Don3-interacting protein Dip1, which is similar to S. pombe Cdc14p, another member of the SIN. Remarkably, deletion of dip1 did not interfere with cytokinesis in U. maydis, but both dip1 and don3 mutants were affected in nuclear envelope breakdown (NEBD) during mitosis. This phenotype has already been described for mutants, which lack the small GTPase Ras3, the U. maydis homologue of the SIN component Spg1p. We propose that the Don3 kinase exerts a dual function in the regulation of cell separation and NEBD.  相似文献   

8.
In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.  相似文献   

9.
Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at least one copy of each kind of checkpoint kinase. Since the relative contribution to the DNA-damage response of each type of kinase varies from one organism to other, the current view about the roles of Chk1 and Chk2/Rad53 during DNA-damage response is one of mutual complementation and intimate cooperation. However, in this work it is reported that Ustilago maydis – a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation – have a single kinase belonging to the Chk1 family but strikingly no kinases related to Chk2/Rad53 family are apparent. The U. maydis Chk1 kinase is able to respond to different classes of DNA damages and its activity is required for the cellular adaptation to such damages. As other described components of the Chk1 family of kinases, U. maydis Chk1 is phosphorylated and translocated to nucleus in response to DNA-damage signals. Interestingly subtle differences in this response depending on the kind of DNA damage are apparent, suggesting that in U. maydis the sole Chk1 kinase recapitulates the roles that in other organisms are shared by Chk1 and the Chk2/Rad53 family of protein kinases.  相似文献   

10.
Ustilago maydis, the causal agent of corn smut disease, displays dimorphic growth in which it alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. We are interested in identifying the genetic determinants of filamentous growth and pathogenicity in U. maydis. To do this we have taken a forward genetic approach. Earlier, we showed that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Mutagenesis of a uac1 disruption strain allowed the isolation of a large number of budding suppressor mutants. These mutants are named ubc, for Ustilago bypass of cyclase, as they no longer require the production of cyclic AMP (cAMP) to grow in the budding morphology. Complementation of a subset of these suppressor mutants led to the identification of the ubc4 and ubc5 genes, which are required for filamentous growth and encode a MAP (mitogen-activated protein) kinase kinase kinase and a MAP kinase kinase, respectively. Evidence suggests that they are important in the pheromone response pathway and in pathogenicity. These results further support an important interplay of the cAMP and MAP kinase signal transduction pathways in the control of morphogenesis and pathogenicity in U. maydis.  相似文献   

11.
Isolation of the REC1 gene controlling recombination in Ustilago maydis   总被引:5,自引:0,他引:5  
T Tsukuda  R Bauchwitz  W K Holloman 《Gene》1989,85(2):335-341
  相似文献   

12.
Ustilago maydis is a biotrophic fungus that induces formation of tumors in maize (Zea mays L). In a recent study we identified See1 (Seedling efficient effector 1) as an U. maydis organ-specific effector required for tumor formation in leaves. See1 is required for U. maydis induced reactivation of plant DNA synthesis during leaf tumor progression. The protein is secreted from biotrophic hyphae and localizes to the cytoplasm and nucleus of plant cell. See1 interacts with maize SGT1, a cell cycle and immune regulator, interfering with its MAPK-triggered phosphorylation. Here, we present new data on the conservation of See1 in other closely related smuts and experimental data on the functionality of See1 ortholog in Ustilago hordei, the causal agent of barley covered smut disease.  相似文献   

13.
14.
The immunity to the toxin encoded by the P1 virus of Ustilago maydis was mapped on the smallest of the viral dsRNA segments. Mapping of the immunity was performed by derivation of strains carrying only part of the P1 dsRNA. The transmission of the immunity by cytoduction was shown to be associated with the transfer of the light dsRNA segment.  相似文献   

15.
Nucleotide sequence of the REC1 gene of Ustilago maydis.   总被引:2,自引:4,他引:2  
  相似文献   

16.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

17.
Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis. Although the microtubule plus-ends are directed to the hyphal tip, of all 10 kinesins analyzed, only conventional kinesin (Kinesin-1) and Unc104/Kif1A-like kinesin (Kinesin-3) were up-regulated in hyphae and they are essential for extended hyphal growth. deltakin1 and deltakin3 mutant hyphae grew irregular and remained short, but they were still able to grow polarized. No additional phenotype was detected in deltakin1rkin3 double mutants, but polarity was lost in deltamyo5rkin1 and deltamyo5rkin3 mutant cells, suggesting that kinesins and class V myosin cooperate in hyphal growth. Consistent with such a role in secretion, fusion proteins of green fluorescent protein and Kinesin-1, Myosin-V, and Kinesin-3 accumulate in the apex of hyphae, a region where secretory vesicles cluster to form the fungal Spitzenk?rper. Quantitative assays revealed a role of Kin3 in secretion of acid phosphatase, whereas Kin1 was not involved. Our data demonstrate that just two kinesins and at least one myosin support hyphal growth.  相似文献   

18.
The highly conserved GTP-binding proteins Cdc42 and Rac1 regulate cytokinesis, establishment of cell polarity and vesicular trafficking. In the dimorphic fungus Ustilago maydis , Rac1 is required for cell polarity and budding, while Cdc42 is essential for cell separation during cytokinesis. The same cell separation defect is also observed in mutants that lack Don1, a guanine nucleotide exchange factor (GEF) of the Dbl family. We have generated a series of chimeric GTP-binding proteins consisting of different portions of Cdc42 and Rac1. In vivo complementation analysis revealed that a short region encompassing amino acids 41–56 determines signalling specificity. Remarkably, substitution of a single amino acid at position 56 within this specificity domain is sufficient to confer Cdc42 function to Rac1 in vivo . Expression of Rac1W56F in Δ cdc42 mutant cells resulted in complementation of the cell separation defect. In vitro GDP/GTP exchange assays demonstrated that the Dbl family GEF Don1 is highly specific for Cdc42 and cannot activate Rac1. However, if Rac1W56F is used as a substrate, Don1 is able to stimulate GDP/GTP exchange. Together these data indicate that activation by the GEF Don1 is an important determinant of Cdc42-specific signalling in vivo .  相似文献   

19.
Generation of cellular asymmetry or cell polarity plays a critical role in cell-cycle-regulated morphogenetic processes involving the actin cytoskeleton. The GTPase Cdc42 regulates actin rearrangements and signal transduction pathways in all eukaryotic cells [1], and the temporal and spatial regulation of Cdc42p depends on the activity and targeting of its guanine-nucleotide exchange factor (GEF). Cdc24p, the Saccharomyces cerevisiae GEF for Cdc42p, is found in a particulate fraction and localizes to the plasma membrane [2] [3] at sites of polarized growth [4]. We show that Cdc24p labeled with green fluorescent protein (GFP-Cdc24p) was targeted to pre-bud sites, the tips and sides of enlarging buds, and mating projections in pheromone-treated cells. Unexpectedly, GFP-Cdc24p also localized to the nucleus and GFP-Cdc24p levels diminished before nuclear division followed by its reappearance in divided nuclei and mother-bud necks during cytokinesis. The Cdc24p amino-terminal 283 amino acids were necessary and sufficient for nuclear localization, which depended on the cyclin-dependent-kinase inhibitor Far1p. The Cdc24p carboxy-terminal 289 amino acids were necessary and sufficient for targeting to the pre-bud site, bud, mother-bud neck, and mating projection. Targeting was independent of the Cdc24p-binding proteins Far1p, the GTPase Rsr1p/Bud1p, the scaffold protein Bem1p, and the G(beta) subunit Ste4p. These data are consistent with a temporal and spatial regulation of Cdc24p-dependent activation of Cdc42p during the cell cycle.  相似文献   

20.
Sphingolipids participate in different biological processes such as cell growth, differentiation, virulence, etc. In recent years these lipids are becoming prime targets for antifungal research. In the dimorphic phytopathogen Ustilago maydis inhibition of sphingolipid biosynthesis with the antifungal drug aureobasidin A (AbA) did not alter cell cycle but caused loss of cell polarity and growth inhibition. The addition of AbA had effects on the assembly of sterol-rich domains (SRDs), which concentrate at the sites of active growth in U. maydis, the actin cytoskeleton, FM4-64 trafficking, and the localization of the motor protein Myo5 and the septin Sep1. However, AbA did not affect the localization of the scaffold proteins Bem1 and Spa2. The septin Sep1 and SRDs showed interdependent partial colocalization suggesting that both act in conjunction to maintain the stability of the polar axis. Time course experiments suggest that AbA provokes cell depolarization in three steps: disassembly of SRDs from the tips, delocalization of some polarity proteins, and lastly appearance of medial division septa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号