首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cultured in 20% O(2), human cytotrophoblasts fuse to form the syncytiotrophoblast with marked induction of hCYP19 (aromatase) gene expression. When cultured in 2% O(2), cytotrophoblast fusion and induced hCYP19 expression are prevented. These effects of hypoxia are mediated by increased expression of mammalian achaete/scute homologue-2 (Mash-2), which increases levels of upstream stimulatory factors 1 and 2 (USF1/2) and their binding as heterodimers to E-boxes surrounding the hCYP19 promoter. In studies to define mechanisms for O(2) regulation of syncytiotrophoblast differentiation, we found that hypoxia and overexpression of Mash-2 markedly increased cyclin B1 levels in cultured trophoblasts and the proportion of cells at the G(2)/M transition. Unlike USF proteins, USF1/2 mRNA levels are unaffected by O(2) tension. To determine whether increased O(2) might enhance proteasomal degradation of USF1/2, human trophoblasts were cultured in 2% or 20% O(2) with or without proteasome inhibitors. In cells cultured in 20% O(2), proteasome inhibitors increased USF1/2 protein levels and blocked spontaneous induction of hCYP19 expression, cell fusion, and differentiation. Like hypoxia, inhibitory effects of proteasome inhibitors on hCYP19 expression were mediated by increased binding of USF1/2 to the E-boxes. In human trophoblast cells cultured in 20% O(2), increased polyubiquitylation of USF1/2 proteins was observed. Thus, early in gestation when the placenta is relatively hypoxic, increased USF1/2 may block trophoblast differentiation and hCYP19 gene expression. In the second trimester, increased O(2) tension promotes proteasomal degradation of USF1/2, resulting in syncytiotrophoblast differentiation and induction of hCYP19 expression.  相似文献   

2.
3.
4.
Obese white adipose tissue is hypoxic but is incapable of inducing compensatory angiogenesis. Brown adipose tissue is highly vascularized, facilitating delivery of nutrients to brown adipocytes for heat production. In this study, we investigated the mechanisms by which white and brown adipocytes respond to hypoxia. Brown adipocytes produced lower amounts of hypoxia-inducible factor 1α (HIF-1α) than white adipocytes in response to low O(2) but induced higher levels of hypoxia-associated genes. The response of white adipocytes to hypoxia required HIF-1α, but its presence alone was incapable of inducing target gene expression under normoxic conditions. In addition to the HIF-1α targets, hypoxia also induced many inflammatory genes. Exposure of white adipocytes to a peroxisome proliferator-activated receptor γ (PPARγ) ligand (troglitazone) attenuated induction of these genes but enhanced expression of the HIF-1α targets. Knockdown of PPARγ in mature white adipocytes prevented the usual robust induction of HIF-1α targets in response to hypoxia. Similarly, knockdown of PPARγ coactivator (PGC) 1β in PGC-1α-deficient brown adipocytes eliminated their response to hypoxia. These data demonstrate that the response of white adipocytes requires HIF-1α but also depends on PPARγ in white cells and the PPARγ cofactors PGC-1α and PGC-1β in brown cells.  相似文献   

5.
6.
7.
8.
Hypoxia occurs during the development of the placenta in the first trimester and correlates with both trophoblast differentiation and the induction of telomerase activity through hTERT expression. We sought to determine the mechanism of regulation of hTERT expression during hypoxia. We show that hypoxia-inducible factor 1alpha (HIF-1alpha) and hTERT expression in the human placenta decrease with gestational age and that these are overexpressed in preeclamptic placenta, a major complication of pregnancy. Hypoxia not only transactivates the hTERT promoter activity but also enhances endogenous hTERT expression. The hTERT promoter region between -165 and +51 contains two HIF-1 consensus motifs, and in vitro reporter assays show that these are essential for hTERT transactivation by HIF-1. Introduction of an antisense oligonucleotide for HIF-1 diminishes hTERT expression during hypoxia, indicating that upregulation of hTERT by hypoxia is directly mediated through HIF-1. Our results provide persuasive evidence that the regulation of hTERT promoter activity by HIF-1 represents a mechanism for trophoblast growth during hypoxia and suggests that this may be a generalized response to hypoxia in various human disorders including resistance to cancer therapeutics by upregulating telomerase.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.  相似文献   

17.
18.
19.
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号