首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant litter: Its dynamics and effects on plant community structure   总被引:8,自引:0,他引:8  
We discuss the dynamics of plant litter, the effects of litter on the chemical and physical environment, the direct and indirect effects of plant litter on plant populations and communities, and different adaptative traits that may be related to litter accumulation. The production of litter depends primarily on the site productivity, but other properties of the environment, as well as chance, may introduce important variation. The existence of time lags between the production of plant organs and their transformation into litter appears as a relevant character of litter dynamics seldom included in models. Herbivory, and other processes that destroy biomass or reduce productivity, may reduce the amount of litter produced. The destruction of litter encompasses a complex of interactions. The main processes, including physical and chemical degradation, consumption by invertebrates and decomposition, are differentially affected by the environment and by the physical and chemical characteristics of the litter itself. The relative importance of those processes varies among systems. Litter alters the physical and chemical environment directly and indirectly. The decomposition of litter may release both nutrients and phytotoxic substances into the soil. The physical changes produced by litter also alter the activity of decomposers, resulting in an indirect effect on the chemical environment. The accumulated litter intercepts light, shading seeds and seedlings, and reduces the thermal amplitude in the soil. By reducing maximum soil temperatures, and creating a barrier to water vapor diffusion, litter reduces evaporation from the soil. However, litter may also diminish water availability when it retains a large proportion of rainfall. Litter creates a physical barrier for seedling and sprout emergence and to seeds reaching the soil.  相似文献   

2.
Variations of soil moisture conditions affect sorption properties of soil organic matter and the pore size distribution of the soils and thus are expected to have an impact on the availability of pollutants and nutrients in soils. At least two principal processes that occur when a soil-water contact is established, are involved. Wetting, which is the very first step, is governed by the interactions of water with the surface of soil organic matter (SOM). The wettability of the pore walls determines the pore accessibility for water. Only in wettable soils, water will occupy the smallest pores first. In the course of wetting, the wettability of the pore walls increases, leading to water redistribution. Swelling of SOM is accompanied by an increase of volume due to the water uptake of the solid SOM phase and will change the SOM polarity. Swelling will thus affect sorption processes in the bulk SOM phase and is expected to change the pore sizes. In this contribution, we investigated swelling and wetting kinetics of soil samples by H-NMR-Relaxometry. We found different effects of wetting and swelling on the development of relaxation time distribution and thus of the pore size distribution. Both swelling and wetting can be slow processes, lasting for up to some weeks. During this time, we found changes in the pore size distribution. For swelling phenomena, we observed a continuous change of the effective pore size, and for wetting phenomena, we found a change in water distribution in a probably rigid pore system. Thus, during swelling and wetting, neither pore size distribution nor sorbent properties of SOM nor hydraulic properties remain constant. Due to the slow kinetics, both processes play an important role in sorption, transport and accessibility for water in hydrophobic areas within a time scale of weeks after e.g. a rainfall event. This will affect the environmental availability and the transport of pollutants and nutrients in the field.  相似文献   

3.
Understanding patterns and processes involved in changes in soil and vegetation after agricultural abandonment is a key issue for management policies leading to land restoration and reclamation in Mediterranean semiarid environments. We selected a number of active and abandoned fields in two regions of olive groves in Catalonia (NE Spain), in order to analyze changes in certain soil properties and vegetation cover variables, as well as their interrelationships. The soil chemical properties considered, summarized into a single PCA axis, showed significant spatial (regional) differences and no temporal (successional) pattern, indicative of the strong influence of the parent rock material. The soil physical variables examined also showed significant regional variability, but such differences could be partially explained by successional changes. The variability at the landscape level and the observed successional trends for soil physical properties are interpreted as a result of both the influence of the bedrock and contrasting management practices prior to abandonment in each region. Although we did not find significant regional or successional variability in a global measure of plant cover, we did find significant and different patterns of variability for each of the main plant functional groups considered. Regional and post-agricultural variability in soil physical properties seem to be the prime factors determining the abundance of the main plant functional groups.  相似文献   

4.
Kennard  D. K.  Gholz  H. L. 《Plant and Soil》2001,234(1):119-129
We compared soil nutrient availability and soil physical properties among four treatments (high-intensity fire, low-intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (Anadenanthera colubrina Vell. Conc.) as a bioassay. Surface soils in high-intensity fire treatments had significantly greater pH values, concentrations of extractable calcium (Ca), potassium (K), magnesium (Mg), and phosphorus (P), and amounts of resin-available P and nitrogen (N) than other treatments; however, a loss of soil organic matter during high-intensity fires likely resulted in increased bulk density and strength, and decreased water infiltration rates. Low intensity fires also significantly increased soil pH, concentrations of extractable Ca, K, Mg, and P, and amounts of resin-available P and N, although to a lesser degree than high-intensity fires. Low-intensity fires did not lower soil organic matter contents or alter soil physical properties. Plant removal and harvesting gap treatments had little effect on soil chemical and physical properties. Despite the potentially negative effects of degraded soil structure on plant growth, growth of A. colubrina seedlings were greater following high-intensity fires. Evidently, the increase in nutrient availability caused by high-intensity fires was not offset by degraded soil structure in its effects on seedling growth. Long-term effects of high intensity fires require further research.  相似文献   

5.
放牧对草原土壤的影响   总被引:79,自引:7,他引:79  
介绍了放牧对草原土壤物理性质 (容重、渗透率 )、化学性质 (有机质、N素 )和微生物的影响。由于草原土壤系统本身的复杂性、滞后性和弹性 ,放牧对土壤性质的影响不尽相同。一般而言 ,随放牧强度的增大 ,动物践踏作用的增强 ,土壤孔隙分布的空间格局发生变化 ,土壤的总孔隙减少 ,特别是大孔隙 (>5 0μm)和较大中等孔隙 (9~ 5 0μm)减少 ,使土壤容重增加 ,土壤的渗透阻力加大 ,土壤的保水和持水能力下降。但在有机质含量很低的沙质土壤中 ,超载过牧 ,造成有机质含量降低 ,土壤的团粒结构减少 ,稳定性团聚体减少 ,土壤结构遭到破坏 ,使得土壤容重反而降低。土壤有机质和放牧之间存在复杂的相互关系 ,土壤有机质对放牧的响应受多种因素的影响 ,这些因素包括植被和土壤的初始状况 ;环境因素 ,特别是水分和温度 ;放牧历史 (强度、频率、持续时间和动物类型 )。同时 ,土壤有机质含量低的土壤比含量高的土壤更易受放牧的影响 ,而使有机质发生变化。土壤微生物量碳是最具活性的土壤碳库 ,对环境的变化敏感 ,能较早地指示生态系统功能的变化。当考虑时间尺度时 ,高强度放牧对土壤肥力有负面的影响 ,短期内 ,由于加速了养分的循环效率 ,产生有利的影响 ,但长期无管理的超载放牧必然造成系统物质 (资源 )输入和输  相似文献   

6.
土壤生物及其对土壤生态学发展的影响   总被引:49,自引:11,他引:49  
土壤生物区系、土壤生物多样性和全球变化已成为土壤生态学研究的肖沿领域,土壤生物以不同的方式改变着土壤的物理、化学和生物学特性,某一等级层次上的土壤生物群落的组成和结构可以对其它等级层次上的资源空间异质性产生影响,而这种空间异质性受到许多生物圈层--土壤功能区域所维持。本文评价了土壤生物区系在土壤生态系统过程中的作用,论述了土壤生物多样性与生态系统功能的关系,讨论了土壤生态系统对全球变化的影响。  相似文献   

7.
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long‐term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well‐documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.  相似文献   

8.
红壤丘陵山地柑桔园土壤熟化问题的初步探讨   总被引:2,自引:2,他引:2  
丘陵山地红壤广泛分布于我国江南,由于地处优越的自然生物气候条件,各省已利用红壤丘陵山地开垦了数以百万亩的柑桔园。然而,这些园地土壤在不同程度上仍表现出自然土壤的基本特性,即所谓“瘠、酸、黏、旱”。针对这些问题,各地柑桔区对这类土壤进行了颇有成效的改良利用,明显改善了土壤性状,加速了红壤柑桔园土壤的熟化过程,从而提高果园土壤的熟化度,为创造柑桔高产、稳产、优质提供了最基本的土壤条件。  相似文献   

9.
Soil quality and health are terms describing similar concepts, but the latter appeals to farmers and crop consultants as part of a holistic approach to soil management. We regard soil health as the integration and optimization of the physical, biological and chemical aspects of soils for improved productivity in an economic and sustainable manner. This paper describes the process used for the selection of soil quality/health indicators that comprise the new Cornell Soil Health Test. Over 1,500 samples collected from controlled research experiments and commercial farms were initially analyzed for 39 potential soil quality indicators. Four physical and four biological indicators were selected based on sensitivity to management, relevance to functional soil processes, ease and cost of sampling, and cost of analysis. Seven chemical indicators were also selected as they are part of the standard soil nutrient test. Soil health test reports were developed to allow for an overall assessment, as well as the identification of specific soil constraints. The new soil health test is being offered on a for-fee basis starting in 2007. In addition, visible near infrared reflectance spectroscopy was evaluated as a possible tool for low-cost soil health assessment. From preliminary analyses, the methodology shows promise for some but not all of the soil quality indicators. In conclusion, an inexpensive soil health test was developed for integrative assessment of the physical, biological, and chemical aspects of soils, thereby facilitating better soil management.  相似文献   

10.
放牧强度对高寒草甸土壤理化性状和植物功能群的影响   总被引:3,自引:0,他引:3  
为明晰放牧强度对植物功能群落的物种分布特征和土壤理化性状的影响。在青藏高原东北缘高寒草甸设置6块放牧强度样地开展试验。采用多元排序和方差分解等方法,分析放牧强度作用下植物功能群落物种分布与土壤物理结构和化学养分因子的定量关系。结果表明:(1)随放牧强度增加,禾本科、莎草科和多年生杂类草植物群落的物种丰富度、盖度和实际重要值均显著降低,而一年生杂类草无显著变化。(2)对于土壤化学养分,不同放牧强度区,土壤速效钾、全氮和有机质含量均随土层深度的增加而降低,土壤速效磷在不同放牧强度区变化规律不一致。随放牧强度增加,土壤速效钾和全氮含量增加,而土壤速效磷和有机质含量无明显变化。(3)对于土壤物理性状,不同放牧强度区,随土层深度增加,土壤紧实度和容重均增加,而土壤含水量和通气孔隙度均降低。随放牧强度增加,0—30 cm各土层深度的土壤紧实度和容重均增加,土壤含水量和通气孔隙度均降低。(4)以功能群为基本单元对植物群落进行方差分解得出,土壤物理性状可单独解释群落功能群分布总方差的58.10%。(5)基于物种尺度对不同功能群落与环境因子进行定量研究表明,土壤紧实度是决定每种功能群物种分布格局的最主要因子。禾本科、莎草科和多年生草本植物均受土壤物理性状的显著影响,贡献率分别为26.3%、31.0%和16.5%。而一年生草本植物不受土壤物理和化学性状的显著影响。综上所述,放牧强度对土壤化学性状的影响具有不确定性,而对土壤物理性状和群落特征的影响具有确定性。土壤物理结构性状主导了高寒草甸植物功能群落的物种分布格局。  相似文献   

11.
目的:探索快速膨胀片层多孔壳聚糖止血海绵的制备工艺,评价止血海绵的理化性能及生物相容性,并探讨原料脱乙酰度对止血海绵性能的影响。方法:考察止血海绵的理化性质,包括扫描电子显微镜(SEM)观察表观形貌,检测力学性能、吸水率、快速吸水膨胀时间和膨胀率,研究其体内外的生物相容性,包括体外细胞毒性实验、动物皮内刺激实验和皮下植入实验。结果:确定了止血海绵的制备工艺,采用该工艺制备的止血海绵均具有片层多孔结构,且具有较高的力学强度和快速膨胀的特点。证实高脱乙酰度原料(DD=95.14%)制备的止血海绵力学性能、吸水率、膨胀率均优于低脱乙酰度原料(DD=69.70%)制备的止血海绵。脱乙酰度69.70%和脱乙酰度95.14%的壳聚糖止血海绵,拉伸强度分别为10.1 N和15.4 N,吸水率分别为1904%和2131%,吸水膨胀时间分别为13.4 s和14.0 s,膨胀率分别为8.4倍和10.8倍。体外细胞毒性实验表明脱乙酰度为95.14%的壳聚糖止血海绵更有利于细胞的增殖,皮内刺激和皮下植入实验结果表明脱乙酰度为95.14%的壳聚糖海止血海绵表现出更小的组织炎性反应。结论:脱乙酰度为95.14%的壳聚糖止血海绵具有优良的力学性能、优异的吸水膨胀能力以及良好的生物相容性,在临床止血特别是腔隙止血方面具有广阔的应用前景。  相似文献   

12.
Centaurea maculosa Lam. (spotted knapweed), a Eurasian perennial forb, has invaded disturbed and undisturbed semiarid grasslands in the western United States. In the past, success in controlling C. maculosa and restoring invaded areas has been limited. Most research has addressed chemical aspects of invasive species interactions with soils, while potential impacts of altered soil physical properties on C. maculosa's success has not been studied. We hypothesized that the persistence of C. maculosa in semiarid rangelands might reflect an ability to alter site conditions. The objective of this study was to compare selected soil physical properties under C. maculosa-dominated and native perennial grass-dominated areas on semiarid grassland. We used six field sites in western Montana containing adjacent plots dominated by C. maculosa and by native perennial grasses. Soil physical properties including particle size fractions, bulk density, and hydraulic and thermal properties, as well as total organic carbon content, of near-surface soils were measured for each vegetation type. Soil physical properties seldom differed between C. maculosa- and native grass-dominated areas. When soil physical properties differed, the differences were inconsistent within and among sites. Presence of C. maculosa did not alter surface soil characteristics at our six sites, thus its persistence on these semi-arid grasslands cannot be explained by an ability to alter near-surface soil characteristics.  相似文献   

13.
The influence of root growth and soil watering regime on aggregation was studied under controlled conditions. The study examined the influence of pea (Pisum sativum cv Greenfeast), ryegrass (Lolium rigidum cv Wimmera) and wheat (Triticum aestivum cv Kite) roots on changes in aggregation and on the properties of the aggregates. The soil was a non swelling red-brown earth which was either kept wet or was allowed to wet and dry during the experiment. Root growth increased the percentage of small sized aggregates (<18 mm diameter), organic carbon, tensile strength and stability of aggregates in comparison with a non planted soil. Changes in aggregate size distribution and properties of the aggregates were related to root length density of the species and also to the soil watering regime. Root length density was in the order ryegrass>pea>wheat. Wetting and drying of soil increased the strength and stability of aggregates. Incubating aggregates allowed some roots to decompose but did not increase the strength or stability of aggregates compared with unincubated soil. The results of this experiment are of practical significance in soil structural management, and in studies of soil aggregation dynamics. It may be possible to use plant roots to alter the size and properties of aggregates.  相似文献   

14.
蚯蚓在生态系统中的作用   总被引:23,自引:0,他引:23  
蚯蚓能够对许多决定土壤肥力的过程产生重要影响, 被称为“生态系统工程师”。它通过取食、消化、排泄和掘穴等活动在其体内外形成众多的反应圈, 从而对生态系统的生物、化学和物理过程产生影响。蚯蚓在生态系统中既是消费者、分解者, 又是调节者, 它在生态系统中的功能具体表现在: (1) 对土壤中有机质分解和养分循环等关键过程的影响; (2) 对土壤理化性质的影响; (3) 与植物、微生物及其他动物的相互作用。蚯蚓活动及其在生态系统中的功能受蚯蚓生态类群、种群大小、植被、母岩、气候、时间尺度以及土地利用历史的综合控制。蚯蚓外来种入侵与生态系统的关系以及蚯蚓对全球变化的响应和影响是两个值得关注的问题。土壤本身的复杂性, 蚯蚓自然历史和生物地理学知识的缺乏, 野外控制蚯蚓群落方法的滞后等都限制了蚯蚓生态学的发展。其他新技术如研究养分循环的碳氮同位素分析和揭示土壤微结构的图像分析等技术的应用是蚯蚓生态功能研究的迫切需要。  相似文献   

15.
生物炭对农田土壤微生物生态的影响研究进展   总被引:5,自引:1,他引:5  
丁艳丽  刘杰  王莹莹 《生态学杂志》2013,24(11):3311-3317
生物炭作为新型土壤改良剂在国内外环境科学等领域受到广泛的关注.关于生物炭对土壤理化性质的改良研究较早,目前虽然已深入到土壤微生物生态的领域,但是大多数将土壤理化性质与土壤微生物生态分开考虑,缺乏对二者相互作用的系统评述.本文总结了施用生物炭后土壤理化性质的改变与土壤微生物群落变化之间的相互关系:生物炭不仅能够提高土壤pH值、增强土壤的持水能力、增加土壤有机质等,而且会影响土壤微生物的群落结构、改变细菌和真菌的丰度;施用生物炭后,土壤环境和土壤微生物之间互相影响互相制约,共同促进了土壤微生物生态系统的改良.本文旨在为生物炭改良农田土壤微生态的深入研究提供新的思路,从生态系统的角度促进生物炭环境效应影响的研究,使生物炭的应用更具有科学性和有效性,并对生物炭在相关领域的应用进行了展望.  相似文献   

16.
The agricultural activity in the Argentine Pampas, characterized by an important trend towards no-till soybean monocropping, has completely transformed the original Pampas landscape into a monotonous scenario with a continuous succession of farms of very low crop diversity. This process has led to soil physical, chemical and biological degradation in those systems. The increase of crop rotation rates in no-till and reduced tillage systems has been proposed as an alternative with reduced negative impact on soils in the context of conventional agriculture. On the other hand, extensive organic farming is also suggested as an alternative to high-input agriculture systems. In this article, we aim to explore how different variations of farming practices and systems impact soil macrofauna, along an edaphoclimatic gradient in the Pampas region. We studied the following systems: natural grassland (Gr) as indicator of the original community, extensive organic farming (Org), conventional agriculture with no-tillage and three crop rotation levels (Nt-R1, Nt-R2 and Nt-R3), and reduced tillage with two levels of crop rotation (Til and Til-R). We assessed soil macrofauna, with emphasis on earthworm, beetle and ant communities; and soil physical and chemical properties. Macrofaunal taxa composition was significantly affected by both management systems and edaphoclimatic conditions. The Gr community had pronounced differences from all the agricultural systems. The earthworm community from Gr had distinctive features from those of most agricultural systems, with Org and Nt-R3 being the most similar to Gr in native and exotic earthworm species, respectively. The beetle community in Org was the most different one, and the communities from the other systems did not show a pattern related to management. Ant community composition was not determined by management systems, but it was affected by edaphoclimatic conditions. All the studied macrofauna groups had a significant co-variation with soil physical and chemical properties, showing that both the characteristics of each soil relative to the geographic location and the effect of management on abiotic soil attributes have an important effect on soil macrofauna. This study confirms that biodiversity is being lost in Pampas soils, which implies a possible threat to the soil capacity to perform the processes that sustain soil functioning and hence plant productivity. Further considerations about the sustainability of the current agricultural model applied in the Argentine Pampas are needed.  相似文献   

17.
Grazing of grasslands changes soil physical and chemical properties as well as vegetation characteristics, such as vegetation cover, species composition and biomass production. In consequence, nutrient allocation and water storage in the top soil are affected. Land use and management changes alter these processes. Knowledge on the impacts of grazing management on nutrient and water fluxes is necessary because of the global importance of grasslands for carbon sequestration. Soil water in semi-arid areas is a limiting factor for matter fluxes and the intrinsic interaction between soil, vegetation and atmosphere. It is therefore desirable to understand the effects of grazing management and stocking rate on the spatial and temporal distribution of soil moisture. In the present study, we address the question how spatio-temporal soil moisture distribution on grazed and ungrazed grassland sites is affected by soil and vegetation properties. The study took place in the Xilin river catchment in Inner Mongolia (PR China). It is a semi-arid steppe environment, which is characterized by still moderate grazing compared to other regions in central Inner Mongolia. However, stocking rates have locally increased and resulted in a degradation of soils and vegetation also in the upper Xilin River basin. We used a multivariate geostatistical approach to reveal spatial dependencies between soil moisture distribution and soil or vegetation parameters. Overall, 7 soil and vegetation parameters (bulk density, sand, silt and clay content, mean weight diameter, mean carbon content of the soil, vegetation cover) and 57 soil moisture data sets were recorded on 100 gridded points on four sites subject to different grazing intensities. Increasing stocking rates accelerated the influence of soil and vegetation parameters on soil moisture. However, the correlation was rather weak, except for a site with high stocking rate where higher correlations were found. Low nugget ratios indicate spatial dependency between soil or plant parameters and soil moisture on a long-term ungrazed site. However, the effect was not found for a second ungrazed site that had been excluded from grazing for a shorter period. Furthermore the most important soil and vegetation parameters for predicting soil moisture distribution varied between different grazing intensities. Therefore, predicting soil moisture by using secondary variables requires a careful selection of the soil or vegetation parameters.  相似文献   

18.

Aims

Few studies have focused on changes in the physical and chemical properties of soils that are induced by grazing at high altitudes. Our aim was to identify potential responses of soil to grazing pressure on the semiarid steppe of the northern Tibetan Plateau and their probable causes.

Methods

Fractal geometry to describe soil structure, soil dynamics, and physical processes within soil is becoming an increasingly useful tool that allows a better understanding of the performance of soil systems. In this study, we sampled four experimental areas in the northern part of the Tibetan Plateau under different grazing intensities: ungrazed, lightly grazed, moderately grazed and heavily grazed plots. Fractal methods were applied to characterise particle-size distributions and pore patterns of soils under different grazing intensities.

Results

Our results reveal a highly significant decrease in the fractal dimensions of particle size distributions (D 1 ) and the fractal dimensions of all pores (D 2 ) with increasing grazing intensity. Soil organic carbon (SOC), total N and total P concentrations increased significantly with decreasing grazing intensity. We did not find differences in soil pH in response to grazing.

Conclusions

Grazing induced a significant deterioration of the physical and chemical topsoil properties in the semiarid steppe of the northern Tibetan Plateau. Fractal dimensions can be a useful parameter for quantifying soil degradation due to human activities.  相似文献   

19.
王芳芳  徐欢  李婷  伍星 《应用生态学报》2019,30(10):3277-3284
放牧是人类管理利用草地生态系统的最主要途径之一.食草动物的采食、践踏、卧息和排泄物归还等干扰不仅会改变草地地上植物群落,也会对土壤养分循环产生显著的影响.随着人类活动的加剧,放牧强度和频率也在逐渐增加,从而对草地土壤氮素循环关键过程产生重要影响.放牧主要通过改变土壤的物理性质、土壤氮库以及微生物的组成和结构,进而影响氮素在土壤中的迁移与转化.适度放牧会促进土壤氮素的矿化过程和硝化过程,加快氮素的周转,有利于植物吸收可利用氮素,而对于反硝化的影响与草地的水热条件和土壤类型等密切相关.目前,关于放牧强度对土壤氮素循环关键过程影响的研究结果不一致,其影响机制尚不明晰,尤其对于不同类型的草原仍存在较大的差异.本研究在大量查阅国内外已有研究结果的基础上,论述了放牧对土壤氮素循环关键过程的影响效应,总结了放牧对土壤氮素循环的影响机制,指出了目前研究过程中存在的不足,并对未来研究中值得重点关注和深入研究的科学问题进行了探讨与展望,为进一步理解放牧对草地土壤氮素循环的影响提供参考.  相似文献   

20.
Harvesting crop residues for bioenergy or bio-product production may decrease soil organic matter (SOM) content, resulting in the degradation of soil physical properties and ultimately soil productivity. Using the least limiting water range (LLWR) to evaluate improvement or degradation of soil physical properties in response to SOM changes has generally been hampered by the extensive amount of data needed to parameterize limiting factor models for crop production. Our objective was to evaluate five pedotransfer functions to determine their effectiveness in predicting soil water holding capacity in response to different SOM levels. Similarly, two other pedotransfer functions were evaluated to determine the effects of SOM on cone index values. Predictions of field capacity and wilting point water content as well as the cone index–water content–bulk density relationship of soil strength using the pedotransfer functions were compared with field data from two tillage experiments near Akron, CO that had a range of SOM concentrations. Equations previously developed by da Silva and Kay gave the best estimates of LLWR for the pedotransfer functions we evaluated. These equations were then used to illustrate LLWR changes in response to different soil and crop management practices on a Duroc loam near Sidney, NE. The results showed that tillage and, possibly, soil erosion decreased the LLWR as tillage intensity increased. Therefore, we recommend that crop residue removal rates be limited to rates that maintain or increase SOM content to ensure soil physical conditions are not degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号