首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene delivery to adult neural stem cells   总被引:15,自引:0,他引:15  
Neural stem cells may present an ideal route for gene therapy as well as offer new possibilities for the replacement of neurons lost to injury or disease. However, it has proved difficult to express ectopic genes in stem cells. We report methods to introduce genes into adult neural stem cells using viral and nonviral vectors in vitro and in vivo. Adenoviral and VSV-G-pseudotyped retroviral vectors are more efficient than plasmid transfection or VSV-G lentiviral transduction in vitro. We further show that adult neural stem cells can be directed to a neuronal fate by ectopic expression of neurogenin 2 in vitro. Plasmids can be delivered in vivo when complexed with linear polyethyleneimine, and gene expression can be targeted specifically to neural stem or progenitor cells by the use of specific promoters. These techniques may be utilized both to study the function of various genes in the differentiation of neural stem cells to specific cell fates and, ultimately, for gene therapy or to generate specific differentiated progeny for cell transplantation.  相似文献   

2.
Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.  相似文献   

3.
The success of gene therapy is largely dependent onthe development of vectors or vehicles that can selectivelyand efficiently deliver a therapeutic gene to cells or targetissues with minimal toxicity. Viruses are efficient transducing vectors. However, the safety concerns regardingthe use of virus vector in human make nonviral deliverysystem an attractive focus. Nonviral vectors are particularly suitable with respect to the simplicity of use, possibility of large-scale production and lack of s…  相似文献   

4.
C G Janson  M J During 《Genomics》2001,78(1-2):3-6
Over the past decade, viral vectors have slowly gained mainstream acceptance in the neuroscience and genetics communities for the in vivo study of gene function [1]. Using stereotactic techniques, it is possible to characterize neuroanatomical relationships through the delivery of neurotropic viral vectors to specific brain regions. More sophisticated studies combine viral vectors with other methods of genetic manipulation such as germline transgenic mice. As more is learned about the properties of different viral vectors, it has become possible to use viral vectors to test hypotheses about the function of genes, through targeted in vivo delivery to the central nervous system (CNS). The effects of gene expression in the brain can be measured on the molecular, biochemical, electrophysiological, morphological, and behavioral levels. We propose that viral vectors should be considered as part of an integrated functional genomics platform in the CNS.  相似文献   

5.
We have shown recently that downregulation of the androgen receptor (AR), one of the key players in prostate tumor cells, with short antisense oligodeoxynucleotides (ODNs) results in inhibition of prostate tumor growth. Particularly with regard to an application of these antisense drugs in vivo, we now investigated the usefulness of microbubble-enhanced ultrasound to deliver these ODNs into prostate cancer cells.

Our short antisense AR ODNs were loaded onto the lipid surface of cationic gas-filled microbubbles by ion charge binding, and delivered into the cells by bursting the loaded microbubbles with ultrasound. In vitro experiments were initially performed to show that this kind of delivery system works in principle. In fact, transfection of prostate tumor cells with antisense AR ODNs using microbubble-enhanced ultrasound resulted in 49% transfected cells, associated with a decrease in AR expression compared to untreated controls. In vivo, uptake of a digoxigenin-labelled ODN was found in prostate tumour xenografts in nude mice following intratumoral or intravenous injection of loaded microbubbles and subsequent exposure of the tumour to ultrasound, respectively. Our results show that ultrasound seems to be the driving force of this delivery system. Uptake of the ODN was also observed in tumors after treatment with ultrasound alone, with only minor differences compared to the combined use of microbubbles and ultrasound.  相似文献   


6.
The goal of gene therapy is either to introduce a therapeutic gene into or replace a defective gene in an individual's cells and tissues. Gene therapy has been urged as a potential method to induce therapeutic angiogenesis in ischemic myocardium and peripheral tissues after extensive investigation in recent preclinical and clinical studies. A successful gene therapy mainly relies on the development of the gene delivery vector. Developments in viral and nonviral vector technology including cell-based gene transfer will further improve transgene delivery and expression efficiency. Nonviral approaches as alternative gene delivery vehicles to viral vectors have received significant attention. Recently, a simple and safe approach of gene delivery into target cells using naked DNA has been improved by combining several techniques. Among the physical approaches, ultrasonic microbubble gene delivery, with its high safety profile, low costs, and repeatable applicability, can increase the permeability of cell membrane to macromolecules such as plasmid DNA by its bioeffects and can provide as a feasible tool in gene delivery. On the other hand, among the promising areas for gene therapy in acquired diseases, ischemic cardiovascular diseases have been widely studied. As a result, gene therapy using advanced technology may play an important role in this regard. The aims of this review focus on understanding the cellular and in vivo barriers in gene transfer and provide an overview of currently used chemical vectors and physical tools that are applied in nonviral cardiovascular gene transfer.  相似文献   

7.
8.
Low-volume jet injection for efficient nonviral in vivo gene transfer   总被引:2,自引:0,他引:2  
The transfer of naked deoxyribonucleic acid (DNA) represents an alternative to viral and liposomal gene transfer technologies for gene therapy applications. Various procedures are employed to deliver naked DNA into the desired cells or tissues in vitro and in vivo, such as by simple needle injection, particle bombardment, in vivo electroporation or jet injection. Among the various nonviral gene delivery technologies jet injection is gaining increasing acceptance because it allows gene transfer into different tissues with deeper penetration of the applied naked DNA. The versatile hand-held Swiss jet injector uses pressurized air to force small volumes of 3 to 10 μL of naked DNA into targeted tissues. The β-galactosidase (LacZ) reporter gene construct and tumor necrosis factor α gene-expressing vectors were successfully jet injected at a pressure of 3.0 bar into xenotransplanted human tumor models of colon carcinoma. Qualitative and quantitative expression analysis of jet injected tumor tissues revealed the efficient expression of these genes in the tumors. Using this Swiss jet-injector prototype repeated jet injections of low volumes (3–10 μL) into one target tissue can easily be performed. The key parameters of in vivo jet injection such as jet injection volume, pressure, jet penetration into the tumor tissue, DNA stability have been defined for optimized nonviral gene therapy. These studies demonstrate the applicability of the jet injection technology for the efficient and simultaneous in vivo gene transfer of two different plasmid DNAs into tumors. It can be employed for nonviral gene therapy of cancer using minimal amounts of naked DNA.  相似文献   

9.
Bacterial delivery systems are gaining increasing interest as potential vaccination vectors to deliver either proteins or nucleic acids for gene expression in the recipient. Bacterial delivery systems for gene expression in vivo usually contain small multicopy plasmids. We have shown before that bacteria containing a herpesvirus bacterial artificial chromosome (BAC) can reconstitute the virus replication cycle after cocultivation with fibroblasts in vitro. In this study we addressed the question of whether bacteria containing a single plasmid with a complete viral genome can also reconstitute the viral replication process in vivo. We used a natural mouse pathogen, the murine cytomegalovirus (MCMV), whose genome has previously been cloned as a BAC in Escherichia coli. In this study, we tested a new application for BAC-cloned herpesvirus genomes. We show that the MCMV BAC can be stably maintained in certain strains of Salmonella enterica serovar Typhimurium as well and that both serovar Typhimurium and E. coli harboring the single-copy MCMV BAC can reconstitute a virus infection upon injection into mice. By this procedure, a productive virus infection is regenerated only in immunocompromised mice. Virus reconstitution in vivo causes elevated titers of specific anti-MCMV antibodies, protection against lethal MCMV challenge, and strong expression of additional genes introduced into the viral genome. Thus, the reconstitution of infectious virus from live attenuated bacteria presents a novel concept for multivalent virus vaccines launched from bacterial vectors.  相似文献   

10.
In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced.  相似文献   

11.
Short interfering RNA (siRNA) has attracted much attention for clinical use in various diseases. However, its delivery, especially through the cell membrane, continues to present a challenge. Advances in ultrasound- and ultrasound contrast-agent technologies have made it possible to change transiently the permeability of the cell membrane and, using a focused ultrasound transducer, to narrow and focus the ultrasound energy on a small target, thereby avoiding damage to surrounding tissue. In this in vitro study, we demonstrate that it is possible to deliver siRNA intracellularly via microbubble-enhanced focused ultrasound. Although further optimization is necessary, our novel method for siRNA transduction represents a powerful tool for using siRNA in vivo and possibly in the clinical setting.  相似文献   

12.
Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells using different approaches; however, a major restriction of reprogramming methods is the use of viral vectors, which have the risk of causing genome-integration of viral DNA. Here, without a viral vector, we generated iPSCs from mouse fibroblasts using an elastin-like polypeptide (ELP)-based transfection method. Our findings support the possible use of ELPs for delivery of the reprogramming genes in to somatic cells for generation of iPSCs. Results of gel retardation assay demonstrated efficient complexation of ELPs with a plasmid containing the four Yamanaka stem cell factors, Oct-4, Klf4, c-myc, and Sox2. After transfection, the iPSCs showed embryonic stem cell-like characteristics, including expression of endogenous pluripotency genes, differentiation into three germ layer lineages, and formation of teratomas in vivo. Our results demonstrate that ELP-based gene delivery may provide a safe method for use in generation of virus-free and exogenous DNA-free iPSCs, which will be crucial for future applications in stem cell-based therapies.  相似文献   

13.
BACKGROUND: Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS: An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS: Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS: We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration.  相似文献   

14.
The human immunodeficiency virus type I (HIV-1) accessory protein Vpr has been associated with the induction of programmed cell death (apoptosis) and cell-cycle arrest. Studies have shown the apoptotic effect of Vpr on primary and established cell lines and on diverse tissues including the central nervous system (CNS) in vitro. However, the relevance of the effect of Vpr observed in vitro to HIV-1 neuropathogenesis in vivo, remains unknown. Due to the narrow host range of HIV-1 infection, no animal model is currently available. This has prompted us to consider a small animal model to evaluate the effects of Vpr on CNS in vivo through surrogate viruses expressing HIV-1Vpr. A single round of replication competent viral vectors, expressing Vpr, were used to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo. Viral particles pseudotyped with VSV-G or N2c envelopes were generated from spleen necrosis virus (SNV) and HIV-1-based vectors to transduce CNS cells. The in vitro studies have demonstrated that Vpr generated by SNV vectors had less apoptotic effects on CNS cells compared with Vpr expressed by HIV-1 vectors. The in vivo study has suggested that viral particles, expressing Vpr generated by HIV-1-based vectors, when delivered through the ventricle, caused loss of neurons and dendritic processes in the cortical region. The apoptotic effect was extended beyond the cortical region and affected the hippocampus neurons, the lining of the choroids plexus, and the cerebellum. However, the effect of Vpr, when delivered through the cortex, showed neuronal damage only around the site of injection. Interestingly, the number of apoptotic neurons were significantly higher with HIV-1 vectors expressing Vpr than by the SNV vectors. This may be due to the differences in the proteins expressed by these viral vectors. These results suggest that Vpr induces apoptosis in CNS cells in vitro and in vivo. To our knowledge, this is the first study to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo in neonatal mice. We propose that this, in expensive animal model, may be of value to design-targeted neuroprotective therapeutics.  相似文献   

15.
Local delivery of viral vectors can enhance the efficacy of therapies by selectively affecting necessary tissues and reducing the required vector dose. Pluronic F127 is a thermosensitive polymer that undergoes a solution–gelation (sol–gel) transition as temperature increases and can deliver vectors without damaging them. While pluronics can be spread over large areas, such as the surface of an organ, before gelation, they lack sufficient adhesivity to remain attached to some tissues, such as the surface of the heart or mucosal surfaces. Here, we utilized blends of pluronic F127 and polycarbophil (PCB), a mucoadhesive agent, to provide the necessary adhesivity for local delivery of viral vectors to the cardiac muscle. The effects of PCB concentration on adhesive properties, sol–gel temperature transition and cytocompatibility were evaluated. Rheological studies showed that PCB decreased the sol–gel transition temperature at concentrations >1% and increased the adhesive properties of the gel. Furthermore, these gels were able to deliver viral vectors and transduce cells in vitro and in vivo in a neonatal mouse apical resection model. These gels could be a useful platform for delivering viral vectors over the surface of organs where increased adhesivity is required.  相似文献   

16.
17.
In vitro and in vivo gene delivery by recombinant baculoviruses   总被引:20,自引:0,他引:20       下载免费PDF全文
Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy.  相似文献   

18.
Non-viral gene therapy is based on the use of plasmid expression vectors and chemical or physical plasmid DNA delivery systems. This review discusses the roles of cationic lipids as vectors for gene transfection, reviews different strategies employed to improve cationic lipids for in vivo use, and provides original results on the physicochemistry of lipoplexes. Cationic lipid/DNA delivery vehicles have evolved considerably since their initial gene transfection experiments. Much work has been carried out to investigate their structure/activity relationships, methods of formulation and physicochemical properties. Further work has also focused on enhancing and prolonging their stability in a physiological environment as well as increasing their site-specific and tissue-specific interactions. Original data presented in this report confirm that cationic lipids associated to DNA form supramolecular lamellar structures, which protect DNA from serum DNAse degradation. The effect of formulation (and hence the size of the particles) on lipoplex in vivo circulation half-life and biodistribution is also discussed. A list of abbreviations can be found at the end of the review.  相似文献   

19.
Gene delivery and gene therapy with herpes simplex virus-based vectors   总被引:3,自引:0,他引:3  
Latchman DS 《Gene》2001,264(1):1-9
The development of efficient means of delivery genes in vivo is essential both for testing gene function in the intact animal and for human gene therapy procedures. A number of viral and non-viral gene delivery methods have been developed for this purpose. Of those herpes simplex virus (HSV)-based vectors have particular advantages for gene delivery to the nervous system including their ability to infect non-dividing neurones and establish asymptomatic latent infections. Moreover, considerable progress has been made, firstly, in disabling HSV vectors so as to prevent the damaging effects of wild type virus and secondly, to ensure long-term expression of the inserted transgene(s). These vectors thus offer a valuable tool for testing gene function in neuronal cells in vivo and may ultimately be safe enough for use in human gene therapy procedures.  相似文献   

20.
Target validation is one of rate-limiting steps in the modern drug discovery. The authors developed a strategy of combining adenovirus-mediated gene transfer for efficient target functionality validation, both in vivo and in vitro, with baculovirus expression to produce sufficient quantities of protein for high-throughput screening (HTS). The incorporation of green fluorescent protein (GFP) in the adenovirus vectors accelerates recombinant adenovirus plaque purification, whereas the use of epitope and affinity tags facilitates the identification and purification of recombinant protein. In this generalized scheme, the flexible modular design of viral vectors facilitates the transition between target validation and HTS. In the example presented, functional target validation in vivo was achieved by overexpressing the target gene in cell-based models and in the mouse cortex following adenovirus-mediated gene delivery. In this context, target overexpression resulted in the accumulation of a disease-related biomarker both in vitro and in vivo. A baculovirus-based expressional system was then generated to produce enough target protein for HTS. Thus, the use of these viral expression systems represents a generalized method for rapid target functionality validation and HTS assay development, which could be applied to numerous target candidates being elucidated in gene discovery programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号