首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Pluripotent human embryonic stem cell (hESC) lines are a promising model system in developmental and tissue regeneration research. Differentiation of hESCs towards the three germ layers and finally tissue specific cell types is often performed through the formation of embryoid bodies (EBs) in suspension or hanging droplet culture systems. However, these systems are inefficient regarding embryoid body (EB) formation, structural support to the EB and long term differentiation capacity. The present study investigates if agarose, as a semi solid matrix, can facilitate EB formation and support differentiation of hESC lines. The results showed that agarose culture is able to enhance EB formation efficiency with 10% and increase EB growth by 300%. The agarose culture system was able to maintain expression of the three germ layers over 8 weeks of culture. All of the four hESC lines tested developed EBs in the agarose system although with a histological heterogeneity between cell lines as well as within cell lines. In conclusion, a 3-D agarose culture of spherical hESC colonies improves EB formation and growth in a cost effective, stable and non-laborious technique.  相似文献   

2.
To investigate formation of the three primary germ layers in mouse embryoid bodies (EBs), we observed changes in structure and gene expression over a 7-day culture period. We compared these changes using two methods for EB formation: hanging drop (HD) and static suspension culture (SSC). Light microscopy showed that a stratified columnar epithelial layer developed on the surface of EBs formed using the HD method. From Day 3 in culture, ultrastructural changes occurred in the aligned cellular membranes. Condensation of actin filaments was followed by formation of complicated adherent junctions and dilatation of intercellular canaliculi containing well-developed microvilli. These changes were more marked in EBs formed by the HD method than the SSC method. On Day 5 of culture, Brachyury gene expression, a marker for mesoderm formation, was detected only with the HD method. Nestin, an ectoderm marker, and Foxa2, an endoderm marker, were expressed with both methods. These results suggest that in EBs formed with the HD method, actin formation and Brachyury gene expression mark the transition from two to three primary germ layers. Additionally, the HD method promotes more rapid and complete development of mouse EBs than does the SSC method. While the SSC method is simple and easy to use, it needs improvement to form more complete EBs.  相似文献   

3.
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.  相似文献   

4.
The demonstration of germ cell and haploid gamete development from embryonic stem cells (ESCs) in vitro has engendered a unique set of possibilities for the study of germ cell development and the associated epigenetic phenomenon. The process of embryoid body (EB) differentiation, like teratoma formation, signifies a spontaneous differentiation of ESCs into cells of all three germ layers, and it is from these differentiating aggregates of cells that putative primordial germ cells (PGCs) and more mature gametes can be identified and isolated. The differentiation system presented here requires the differentiation of murine ESCs into EBs and the subsequent isolation of PGCs as well as haploid male gametes from EBs at various stages of differentiation. It serves as a platform for studying the poorly understood process of germ cell allocation, imprint erasure and gamete formation, with 4-6 weeks being required to isolate PGCs as well as haploid cells.  相似文献   

5.
Development of generic differentiation protocols that function in a range of independently-derived human embryonic stem cell (hESC) lines remains challenging due to considerable diversity in culture methods practiced between lines. Maintenance of BG01 and HUES-7 has routinely been on mouse embryonic fibroblast (MEF) feeder layers using manual- and trypsin-passaging, respectively. We adapted both lines to trypsin-passaging on feeders or on Matrigel in feeder-free conditions and assessed proliferation and cardiac differentiation. On feeders, undifferentiated proliferation of BG01 and HUES-7 was supported by all three media tested (BG-SK, HUES-C and HUES-nL), although incidence of karyotypic instability increased in both lines in BG-SK. On Matrigel, KSR-containing conditioned medium (CM) promoted undifferentiated cell proliferation, while differentiation occurred in CM containing Plasmanate or ES-screened Fetal Bovine Serum (FBS) and in unconditioned medium containing 100 ng/ml bFGF. Matrigel cultures were advantageous for transfection but detrimental to embryoid body (EB) formation. However, transfer of hESCs from Matrigel back to feeders and culturing to confluence was found to rescue EB formation. EBs formed efficiently when hESCs on feeders were treated with collagenase, harvested by scraping and then cultured in suspension in CM. Subsequent culture in FBS-containing medium produced spontaneously contracting EBs, for which the mean beat rate was 37.2 +/- 2.3 and 41.1 +/- 3.1 beats/min for BG01-EBs and HUES-7-EBs, respectively. Derived cardiomyocytes expressed cardiac genes and responded to pharmacological stimulation. Therefore the same culture and differentiation conditions functioned in two independently-derived hESC lines. Similar studies in other lines may facilitate development of universal protocols.  相似文献   

6.
One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.  相似文献   

7.
Derivation of human embryonic stem cell lines from parthenogenetic blastocysts   总被引:14,自引:1,他引:14  
Mai Q  Yu Y  Li T  Wang L  Chen MJ  Huang SZ  Zhou C  Zhou Q 《Cell research》2007,17(12):1008-1019
  相似文献   

8.
The therapeutic potential of human pluripotent stem (hPS) cells is threatened, among various problems, by the difficulty to homogenously direct cell differentiation into specific lineages. The transition from hPSC into committed differentiated cells is accompanied by secretome activity, remodeling of extracellular matrix and self‐organization into germ layers. In this work, we aimed to investigate how different three‐dimensional microenvironments regulate the early differentiation of the three germ layers in human embryonic stem (hES) cells derived embryoid bodies. In particular, a permeable, biocompatible, hydrogel microwell array was specifically designed for recreating a confined niche in which EB secreted molecules accumulate in accordance with hydrogel diffusional cut‐off. Fluorescence recovery after photobleaching technique was performed to accurately evaluate hydrogel permeability, mesh size and diffusional cutoff for soluble molecules. Three different culture conditions of EB culture were analyzed: suspension, confinement in microwells of width/depth ratio 1:1 and 1:2. Results show that EBs cultured in microwells are viable and have comparable average size after 8 days culture. Whole genome microarrays show that significative differential gene expression was observed between suspension and confined EBs culture. In particular, EBs culture in microwells promotes the expression of genes involved in pattern specification processes, brain development, ectoderm and endoderm differentiation. On the contrary, suspension EBs express instead genes involved in mesoderm specification and heart development. These results suggest that local accumulation of EBs secreted molecules drives differentiation patterns, as confirmed by immunofluorescence of germ layer markers, in hydrogel confined EB culture from both hES cells and human induced pluripotent stem (hiPS) cells. Our findings highlight an additional potential role of biomaterial in controlling hPSC differentiation through secreted factor niche specification. Biotechnol. Bioeng. 2012; 109: 3119–3132. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
Definitive mesoderm arises from a bipotent mesendodermal population, and to study processes controlling its development at this stage, embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context, we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively, EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation, EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic, vascular, and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition, the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.  相似文献   

11.
12.
Embryonic stem (ES) cells can be induced to differentiate into embryoid bodies (EBs) in a synchronised manner when plated at a fixed density in hanging drops. This differentiation procedure mimics post-implantation development in mouse embryos and also serves as the starting point of protocols used in differentiation of stem cells into various lineages. Currently, little is known about the potential influence of microRNAs (miRNAs) on mRNA expression patterns during EB formation. We have measured mRNA and miRNA expression in developing EBs plated in hanging drops until day 3, when discrete structural changes occur involving their differentiation into three germ layers. We observe significant alterations in mRNA and miRNA expression profiles during this early developmental time frame, in particular of genes involved in germ layer formation, stem cell pluripotency and nervous system development. Computational target prediction using Pictar, TargetScan and miRBase Targets reveals an enrichment of binding sites corresponding to differentially and highly expressed miRNAs in stem cell pluripotency genes and a neuroectodermal marker, Nes. We also find that members of let-7 family are significantly down-regulated at day 3 and the corresponding up-regulated genes are enriched in let-7 seed sequences. These results depict how miRNA expression changes may affect the expression of mRNAs involved in EB formation on a genome-wide scale. Understanding the regulatory effects of miRNAs during EB formation may enable more efficient derivation of different cell types in culture.  相似文献   

13.
The formation of embryoid bodies (EBs) is the principal step in the differentiation of embryonic stem (ES) cells. In this study, the morphological characteristics and gene expression patterns of EBs related to the sequential stages of embryonic development were well defined in four distinct developmental groups over 112 days of culture: early-stage EBs groups (1–7 days of differentiation), mid-stage EBs groups (9–15 days of differentiation), maturing EBs groups (17–45 days of differentiation) and matured EBs groups (50 days of differentiation). We first determined definite histological location of apoptosis within EBs and the sequential expression of molecular markers representing stem cells (Oct4, SSEA-1, Sox-2 and AKP), germ cells (Fragilis, Dazl, c-kit, StellaR, Mvh and Stra8), ectoderm (Neurod, Nestin and Neurofilament), mesoderm (Gata-1, Flk-1 and Hbb) and endoderm (AFP and Transthyretin). Our results revealed that developing EBs possess either pluripotent stem cell or germ cell states and that three-dimensional aggregates of EBs initiate mES cell differentiation during prolonged culture in vitro. Therefore, we suggest that this EB system to some extent recapitulates the early developmental processes occurring in vivo.  相似文献   

14.
15.
16.
Human embryonic stem cells (hESCs) have the potential to differentiate into various cell types, and the three germ layers in vivo and in vitro. They are therefore useful in transplantation and tissue engineering. Here, we describe the expression patterns of selected steroid receptor mRNAs - estrogen receptor-alpha (ER-alpha), ER-beta, glucocorticoid receptor (GR), and progesterone receptor (PR) - in undifferentiated hESCs and embryoid bodies (EBs) cultured for 2, 4, and 6 d, as assessed by real-time PCR, in order to define the possible influence of steroid hormones on the differentiation of hESCs. These receptor mRNAs were expressed in undifferentiated hESCs and EBs. The expression of PR mRNA only decreased during the differentiation of EBs but not of hESCs. Immunohistochemical analysis gave strong staining of ER-alpha, ER-beta, and GR proteins in the nuclei of hESCs and EBs, whereas PR was not detected. We also examined the potential of these steroid hormones to direct the differentiation of hESCs in vitro. The expression of 11 cell-specific markers representing 3 germ layers and 5 tissue types was used to assess the differentiation of hESCs. We found that certain endodermal marker genes were either only expressed in the estrogen-treated group or their expression was stimulated in that group, suggesting that steroid hormones can control the differentiation of hESCs into various cell types.  相似文献   

17.
Objectives: To characterize basal differentiation tendencies of a human embryonic stem (hES) cell line, KCL‐002. Materials and methods: In vitro specification and differentiation of hES cells were carried out using embryoid body (EB) cultures and tests of pluripotency and in vivo differentiation were performed by teratoma assays in SCID mice. Real‐time PCR, immunohistochemistry, flow cytometry and histological analyses were used to identify expression of genes and proteins associated with the ectodermal, endodermal and mesodermal germ layers. Results: Undifferentiated KCL‐002 cells expressed characteristic markers of pluripotent stem cells such as Nanog, Sox‐2, Oct‐4 and TRA 1‐60. When differentiated in vitro as EB cultures, expression of pluripotency, endodermal and ectodermal markers decreased rapidly. In contrast, mesodermal and mesenchymal markers such as VEGFR‐2, α‐actin and vimentin increased during EB differentiation as shown by qPCR, immunostaining and flow cytometric analyses. Teratoma formation in SCID mice demonstrated the potential to form all germ layers in vivo with a greater proportion of the tumours containing mesenchymal derivatives. Conclusions: The data presented suggest that the KCL‐002 hES cell line is pluripotent and harbours a bias in basal differentiation tendencies towards mesodermal and mesenchymal lineage cells. Characterizing innate differentiation propensities of hES cell lines is important for understanding heterogeneity between different cell lines and for further studies aimed at deriving specific lineages from hES cells.  相似文献   

18.
Human embryonic stem cells (hESCs) can differentiate into cardiomyocytes, but the efficiency of this process is highly variable. So, developing generic differentiation protocols and their empirical testing on a range of independently derived hESC lines pose a daunting challenge due to considerable diversity in culture methods practiced between lines. Maintenance of BG01V and ReliCellhES1 has routinely been on mouse embryonic fibroblast (MEF) feeder layers using manual passaging. We assessed cardiac differentiation from both the cell lines via embryoid body (EB) formation. Subsequent culture in low fetal bovine serum (5%)-containing medium produced spontaneously contracting EBs, in the presence of bone morphogenetic protein-2 (BMP-2; 25 ng/ml). Derived cardiomyocytes expressed cardiac genes and proteins and responded to functional assays. Further, the activation of the Smad signaling machinery evoked by BMP-2 has been confirmed through inhibitor studies. Therefore, in our hands, the same differentiation conditions functioned in two independently derived hESC lines. Similar studies in other lines may facilitate development of universal protocols. The present data may also provide valuable insights for testing of other factors that might promote cardiomyocyte differentiation in low-serum formulations.  相似文献   

19.
20.
The ability to generate human pluripotent stem cell-derived cell types at sufficiently high numbers and in a reproducible manner is fundamental for clinical and biopharmaceutical applications. Current experimental methods for the differentiation of pluripotent cells such as human embryonic stem cells (hESC) rely on the generation of heterogeneous aggregates of cells, also called "embryoid bodies" (EBs), in small scale static culture. These protocols are typically (1) not scalable, (2) result in a wide range of EB sizes and (3) expose cells to fluctuations in physicochemical parameters. With the goal of establishing a robust bioprocess we first screened different scalable suspension systems for their ability to support the growth and differentiation of hESCs. Next homogeneity of initial cell aggregates was improved by employing a micro-printing strategy to generate large numbers of size-specified hESC aggregates. Finally, these technologies were integrated into a fully controlled bioreactor system and the impact of oxygen concentration was investigated. Our results demonstrate the beneficial effects of stirred bioreactor culture, aggregate size-control and hypoxia (4% oxygen tension) on both cell growth and cell differentiation towards cardiomyocytes. QRT-PCR data for markers such as Brachyury, LIM domain homeobox gene Isl-1, Troponin T and Myosin Light Chain 2v, as well as immunohistochemistry and functional analysis by response to chronotropic agents, documented the impact of these parameters on cardiac differentiation. This study provides an important foundation towards the robust generation of clinically relevant numbers of hESC derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号