首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu/Zn-containing proteins have recently become of interest with regard to their relation with malignant disorders. Cu/Zn-superoxide dismutase (Cu/Zn-SOD) was found increased in chemically induced tumors of the large bowel whereas metallothionein (MT), containing Zn and some Cu, was shown important for the response of tumors to chemotherapy. In the present study, we evaluated the Cu/Zn-SOD and MT content of normal human colonic mucosa and colorectal carcinomas, obtained from 20 resection specimens, and of 47 adenomatous polyps. The Cu/Zn-SOD content of polyps and carcinomas was significantly (p < 0.01) elevated when compared to normal mucosa. In the adenomatous polyps the Cu/Zn-SOD content increased significantly with increasing grade of epithelial cell dysplasia, diameter, and presence of a villous component. In the carcinomas no relation was noticed between the Cu/Zn-SOD content and the Dukes' stage or the grade of differentiation.The MT content was significantly decreased in both adenomatous polyps and carcinomas when compared to that in normal mucosa. The MT content was not related to the grade of epithelial cell dysplasia of the polyps, and to the Dukes' stage or the differentiation of the carcinomas. In conclusion, neoplasia of the colorectum is accompanied by an increase in Cu/Zn-SOD and a decrease in MT. These findings support the association between changes in Cu/Zn proteins and malignancy.  相似文献   

2.
Summary The effect of Mo on Cu, Mn and Fe; and Cu: Mo ratio in berseem was studied in a normal cultivated and recently reclaimed saline-sodic soil. Mo application decreased Cu, Mn and Fe content in berseem in both the soils. Cu, Mn and Fe content in plant tissue grown in recently reclaimed soil was less than normal cultivated soil. Mo decreased Cu: Mo ratio whereas S application increased Cu: Mo ratio in plant. Cu: Mo ratio from animal nutrition point of view was in the safe range if Mo was not applied in the berseem crop.  相似文献   

3.
Summary The relative efficiency of seven extractants for estimating available Cu in sierozem soils of Haryana was studied. Bulk samples of 15 soils ranging in neutral normal amm. acetate extractable Cu from 0.12 to 0.20 ppm were subjected to screen-house study. The quantities of Cu extracted with neutral normal amm. acetate, Morgan’s reagent (pH 4.8)N ammonium acetate (pH 4.8), 0.1N HCl, 0.02M EDTA, critrate-EDTA and DTPA from soils were examined for their correlation with responses of maize in terms of Bray’s percentage yield and percentage Cu uptake. The highest coefficient of correlation was obtained between Cu extractable with neutral 1N NH4OAc and Bray’s per cent yield and per cent Cu uptake. All other methods showed lower values of correlation. The critical level of available Cu estimated with use of neutral normal NH4OAc was 0.16 ppm. Below this value, responses to applied Cu can be expected.  相似文献   

4.
A noticeable effect of sulfite treatment was observed on the plasma ceruloplasmin ferroxidase activity of rats with normal sulfite oxidase activity when compared to normal controls. The plasma levels of selenium, iron, and zinc were unaffected by sulfite in normal and sulfite oxidase (SOX)-deficient rats. While plasma level of Mn was decreasing, plasma Cu level increased in SOX-deficient rats. Treating SOX-deficient groups with sulfite did not alter plasma level of Mn but made plasma level of Cu back to its normal level. This is the first evidence that Cu and Mn status were affected in experimental sulfite oxidase deficiency induced by low molybdenum diet with tungsten addition deserving further research to determine the underlying mechanisms of these observations in experimental sulfite oxidase deficiency.  相似文献   

5.
The Cu2+-binding proteins from liver and kidney tissue of 7--8-day-old brindled (Mobr) mice and their normal littermates were compared. (1) Separation over Bio-Gel P-10 showed that the differences in the Cu2+ content of mutant tissues were largely associated with a low-molecular-weight protein fraction (mol.wt. 14 500). (2) Further purification of this low-molecular-weight fraction by anion-exchange chromatography revealed four subfractions. The Cu2+ content of each subfraction reflected the Cu2+ status of the tissue of origin; the Cu2+ contents of the mutant kidney subfractions were elevated and those of the mutant liver were depressed compared with normal. In contrast, the protein contents of the subfractions were less variable and did not reflect the differing Cu2+ contents. (3) Amino acid analysis of the four subfractions from CuCl2-treated mutant and normal animals revealed clos similarities. The proteins showed high glycine, glutamic acid, serine, alanine and lysine contents and a rather variable cysteine content. Differences were apparent in the normal liver subfractions, which showed a higher cysteine content and lower glutamic acid content than did either the mutant liver or normal and mutant kidney subfractions. These observations, together with the recorded presence of aromatic amino acids, indicated that these proteins are not thioneins.  相似文献   

6.
Age-associated changes in hypothalamic catalase activity and level, and Cu/Zn superoxide dismutase (Cu/Zn SOD) activity were examined in Ames dwarf mice with growth hormone (GH) deficiency and prolonged lifespan, in PEPCK-hGH transgenic mice with overexpression of GH and reduced lifespan, and compared to values measured in normal controls. Hypothalami from young (3-4 months), middle-aged (9-10 months), and old (19-23 months) male mice were examined using spectrophotometric assay and Western blot. In dwarf mice, Cu/Zn SOD and catalase activities declined with age, and were higher than the corresponding normal values in young and middle-aged groups. Catalase levels also declined with age, but were similar to values in normal controls. In GH transgenic mice, age-associated decline of both catalase and Cu/Zn SOD occurred earlier than in normal animals. Catalase levels and activities in transgenic animals were similar to controls, whereas Cu/Zn SOD activity was higher in transgenics than in normal mice. The present results suggest that dwarf mice, during early life, have enhanced hypothalamic free radical defenses, which may contribute to their extended lifespan. However, from the present results in GH transgenic mice, it is impossible to conclude whether early decline of hypothalamic catalase and Cu/Zn SOD in these animals represents a correlate of accelerated aging, or contributes to their reduced lifespan.  相似文献   

7.
Yu S  Yin S  Pham N  Wong P  Kang SC  Petersen RB  Li C  Sy MS 《The FEBS journal》2008,275(22):5564-5575
Aggregation of the normal cellular prion protein, PrP, is important in the pathogenesis of prion disease. PrP binds glycosaminoglycan (GAG) and divalent cations, such as Cu(2+) and Zn(2+). Here, we report our findings that GAG and Cu(2+) promote the aggregation of recombinant human PrP (rPrP). The normal cellular prion protein has five octapeptide repeats. In the presence of either GAG or Cu(2+), mutant rPrPs with eight or ten octapeptide repeats are more aggregation prone, exhibit faster kinetics and form larger aggregates than wild-type PrP. When the GAG-binding motif, KKRPK, is deleted the effect of GAG but not that of Cu(2+) is abolished. By contrast, when the Cu(2+)-binding motif, the octapeptide-repeat region, is deleted, neither GAG nor Cu(2+) is able to promote aggregation. Therefore, the octapeptide-repeat region is critical in the aggregation of rPrP, irrespective of the promoting ligand. Furthermore, aggregation of rPrP in the presence of GAG is blocked with anti-PrP mAbs, whereas none of the tested anti-PrP mAbs block Cu(2+)-promoted aggregation. However, a mAb that is specific for an epitope at the N-terminus enhances aggregation in the presence of either GAG or Cu(2+). Therefore, although binding of either GAG or Cu(2+) promotes the aggregation of rPrP, their aggregation processes are different, suggesting multiple pathways of rPrP aggregation.  相似文献   

8.
Literature concerning prion diseases and Cu metabolism was examined to determine merits of various suggestions concerning the relationship between these diseases and altered Cu metabolism. There are a number of recent suggestions that the normal non-pathogenic form of the prion protein (PrP(C)) contains Cu while the abnormal pathogenic form of this protein, PrP(SC), lacks Cu. Results of experiments showing oxidant sensitivity in the presence of ionically bonded Cu and millimolar concentrations of hydrogen peroxide were found to lack relevance. Demonstrating superoxide disproportionation and a correlation with cellular Cu2Zn2SOD activity is relevant and consistent with a role for PrP(C) in Cu endocytosis. There are also a number of recent suggestions that PrP(C) has a role in nerve transmission. Serum from mice that lack cellular PrP(C) was found to have an elevated Cu content consistent with a response to overcome an inflammatory disease. Attempts to induce a 'transmissible' form of prion disease requiring intracerebral injections of somewhat purified brain homogenates were found lacking in support for an etiology occurring as the result of oral ingestion of supposedly 'infected' tissues. It is suggested that PrP(C) is a normal Cu-dependent cuproglycoprotein of unknown function that may have a role in facilitating normal nitrogen monoxide- or carbon monoxide-mediated biochemistry.  相似文献   

9.
BackgroundNanotoxicology is a major field of study that reveals hazard effects of nanomaterials on the living cells.MethodsIn the present study, Copper/Copper oxide nanoparticles (Cu/CuO NPs) were prepared by the chemical reduction method and characterized by different techniques such as: X-Ray Diffraction, Transmission and Scanning Electron Microscopy. Evaluation of the toxicity of Cu/CuO NPs was performed on 2 types of cells: human lung normal cell lines (WI-38) and human lung carcinoma cell (A549). To assess the toxicity of the prepared Cu/CuOs NPs, the two cell types were exposed to Cu/CuO NPs for 72 h. The half-maximal inhibitory concentration IC50 of Cu/CuO NPs for both cell types was separately determined and used to examine the cell genotoxicity concurrently with the determination of some oxidative stress parameters: nitric oxide, glutathione reduced, hydrogen peroxide, malondialdehyde and superoxide dismutase.ResultsCu/CuO NPs suppressed proliferation and viability of normal and carcinoma lung cells. Treatment of both cell types with their IC50’s of Cu/CuO NPs resulted in DNA damage besides the generation of reactive oxygen species and consequently the generation of a state of oxidative stress.ConclusionOverall, it can be concluded that the IC50's of the prepared Cu/CuO NPs were cytotoxic and genotoxic to both normal and cancerous lung cells.  相似文献   

10.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   

11.
The function of human Sco1 and Sco2 is shown to be dependent on copper ion binding. Expression of soluble domains of human Sco1 and Sco2 either in bacteria or the yeast cytoplasm resulted in the recovery of copper-containing proteins. The metallation of human Sco1, but not Sco2, when expressed in the yeast cytoplasm is dependent on the co-expression of human Cox17. Two conserved cysteines and a histidyl residue, known to be important for both copper binding and in vivo function in yeast Sco1, are also critical for in vivo function of human Sco1 and Sco2. Human and yeast Sco proteins can bind either a single Cu(I) or Cu(II) ion. The Cu(II) site yields S-Cu(II) charge transfer transitions that are not bleached by weak reductants or chelators. The Cu(I) site exhibits trigonal geometry, whereas the Cu(II) site resembles a type II Cu(II) site with a higher coordination number. To identify additional potential ligands for the Cu(II) site, a series of mutant proteins with substitutions in conserved residues in the vicinity of the Cu(I) site were examined. Mutation of several conserved carboxylates did not alter either in vivo function or the presence of the Cu(II) chromophore. In contrast, replacement of Asp238 in human or yeast Sco1 abrogated the Cu(II) visible transitions and in yeast Sco1 attenuated Cu(II), but not Cu(I), binding. Both the mutant yeast and human proteins were nonfunctional, suggesting the importance of this aspartate for normal function. Taken together, these data suggest that both Cu(I) and Cu(II) binding are critical for normal Sco function.  相似文献   

12.
黄芩黄酮对硒性白内障晶状体抗氧化酶表达的影响   总被引:9,自引:0,他引:9  
为探讨黄芩黄酮防治白内障的作用机理 ,采用半定量RT PCR方法比较正常组、白内障组和中药防治组大鼠晶状体中GSH Px、GR和Cu ZnSOD的mRNA水平 .白内障组GSH Px、GR和Cu ZnSOD的mRNA水平在 15d龄时显著高于正常 ,然后下降 ;在 2 7d和 31d龄 ,GR和Cu ZnSOD的mRNA水平下降至与正常无显著差异 ,GSH PxmRNA水平仍略高于正常 .中药防治组晶状体中 ,3种抗氧化酶的mRNA水平在各实验取样点无明显变化 ;其中 ,GR和Cu ZnSOD的mRNA水平一直与正常无显著差异 ,GSH PxmRNA水平略高于正常 .黄芩黄酮可能通过有效清除亚硒酸钠间接产生的活性氧来防止白内障的发生 ,并使亚硒酸钠对晶状体抗氧化酶表达的影响得以消除  相似文献   

13.
随着经济水平和生活水平的逐步提高,我国心血管疾病的患者数量也在逐年上升。因此,加深对心血管疾病的认知和预防乃是当务之急。在人体所需的众多微量金属元素中,铜对维护心血管的健康起到了重要的作用。铜的缺乏可能会导致一系列心血管疾病的发生,如冠心病、高血压、心律失常等。究其原因,是由于铜能影响血管的形成以及血管的正常生理功能,同时也参与了众多相关生长因子的调控。所以,人体要保证足量的铜摄入,避免铜元素的缺乏。向生物材料中主动添加铜元素,可以通过释放铜离子起到促进内皮细胞增殖和迁移的作用,进而加速伤口的愈合。目前,治疗高发的冠心病的重要手段是采用冠脉支架植入手术,但是其依旧面临着支架内再狭窄和血栓这两种风险。含铜的金属支架材料通过释放对血管有益的铜离子,有望加快支架植入后的内皮化过程,进而降低支架内再狭窄和血栓的发生率。所以,将来积极开发应用于心血管领域的含铜医用材料是一种缓解和治疗心血管疾病的有效途径。  相似文献   

14.
The addition of Cu2+ (0.1-1.0 mM) to respiring, unfertilized eggs produced a marked stimulation in the rate of respiration whereas Zn2+ had no effect over the same concentration range. In the absence of Cu2+, temperature had little effect on unfertilized egg respiration but the Cu2+ stimulated respiratory rate showed the more normal response with a Q10 of 1.86 (10-20 degrees C). It appears that perch egg respiration is rate-limited by a physical event and it is suggested that Cu2+ may act by dissipating an oxygen permeability barrier located at the chorion.  相似文献   

15.
Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne Cu (22 microg/l) in moderately hard water for up to 28 days. Relative to control fish kept at background Cu levels (2 microg/l), Cu-preexposed fish displayed decreased uptake rates of waterborne Cu via the gills but not of dietary Cu via the gut during 48-h exposures to (64)Cu-radiolabeled water and diet, respectively. At normal dietary and waterborne Cu levels, the uptake rates of dietary Cu into the whole body without the gut were 0.40-0.90 ng. g(-1). h(-1), >10-fold higher than uptake rates of waterborne Cu into the whole body without the gills, which were 0.02-0.07 ng. g(-1). h(-1). Previously Cu-exposed fish showed decreased new Cu accumulation in the gills, liver, and carcass during waterborne (64)Cu exposures and in the liver during dietary (64)Cu exposures. A 3-h gill Cu-binding assay showed downregulation of the putative high-affinity, low-capacity Cu transporters and upregulation of the low-affinity, high-capacity Cu transporters at the gills in Cu-preexposed fish. Exchangeable Cu pools in all the tissues were higher during dietary than during waterborne (64)Cu exposures, and previous Cu exposure reduced waterborne exchangeable Cu pools in gill, liver, and carcass. Overall, these results suggest a quantitatively greater role for the dietary than for the waterborne route of Cu uptake, a key role for the gill in Cu homeostasis, and important roles for the liver and gut in the normal metabolism of Cu in fish.  相似文献   

16.
The rate of hemolysis and the decline in glutathione (GSH) in rabbit erythrocytes caused by copper (Cu) ions were determined. Prior investigations have proposed that the oxidative stress induced by Cu ion depleted the normal cell protective mechanisms. The decline in GSH has been proposed as a necessary prerequisite for hemolysis. We have observed that both GSH decline and hemolysis are Cu dependent, but are two concurrent and independent processes. We have confirmed that oxygen is a necessary reactant for hemolysis and responsible for a major portion of GSH decline. However, in the presence of Cu ion, a slow decline in GSH occurs even in a deaerated system.  相似文献   

17.
Serum copper levels (SCL) and serum zinc levels (SZJ) were evaluated in 128 patients with nasopharyngeal carcinoma (NPC) of varying stages before, during, and after radiotherapy, and then compared with normal age-matched subjects. Among these patients, there were 119 undifferentiated squamous cell carcinoma, 5 differentiated squamous cell carcinoma, and 4 moderately differentiated squamous cell carcinoma, respectively. Before radiotherapy, SCLs were significantly higher in NPC patients than in normal subjects, but the difference of SZLs was not significant. The ratio of Cu/Zn also showed a significant difference between normal subjects and NPC patients preradiotherapy. Moreover, except stage II, patients with more advanced stages of the disease had more elevated Cu/Zn ratios. During and after the period of radiotherapy, the SCL decreased as compared with the level of preradiotherapy. The Cu/Zn ratio also decreased after radiotherapy but not significant. However, Cu/Zn ratio of expired patients at least 2 yr after radiotherapy did not show the significant decrease in contrast to the alive ones.  相似文献   

18.
铜(Cu)是植物必需的微量元素, 作为多种酶的辅因子参与许多植物生理生化反应。Cu缺乏和过量均影响植物正常生长发育, 因此植物进化出精妙复杂的调控网络来严格控制植物体内的Cu含量。植物Cu转运蛋白COPT家族成员与Cu有很高的亲和力, 能够调节植物对Cu的吸收和转运, 在维持植物体内Cu稳态平衡过程中发挥重要作用。COPT蛋白涉及不同的Cu转运功能, 如从外界环境中摄取Cu、从细胞器中输出Cu、长距离运输Cu以及在不同器官间动用和再分配Cu。此外, COPT蛋白在其它离子的稳态平衡维持、昼夜节律性生物钟调控、植物激素合成和植物对激素信号的感受过程中也发挥重要作用。该文综述了模式植物拟南芥(Arabidopsis thaliana) COPT家族各成员的表达和定位、调控机制以及生物学功能等方面的最新进展。  相似文献   

19.
A metallothionein-like protein (MTP) is synthesized in normal diploid human skin fibroblasts cultured in Zn- or Cu-supplemented medium. Synthesis of MTP is not detected in cells cultured without metal supplementation of complete tissue-culture medium. Cultured fibroblasts from patients with Menkes' disease accumulate excess Cu which chromatographs both with highmolecular-weight protein(s) and with a Cu-MTP. Under normal culture conditions, the Menkes' MTP incorporates [35S]-cystine, but not appreciable amounts of 65Zn. However, Menkes fibroblasts retain the ability to incorporate 65Zn into MTP in response to Zn supplementation of the medium. The results do not support the idea that Menkes' disease results from a failure of Cu to bind to MTP, but rather that an elevated intracellular Cu concentration in Menkes' disease fibroblasts leads to association of excess Cu with high-molecular-weight protein, stimulating synthesis of a Cu-binding MTP.  相似文献   

20.
铜(Cu)是植物必需的微量元素, 作为多种酶的辅因子参与许多植物生理生化反应。Cu缺乏和过量均影响植物正常生长发育, 因此植物进化出精妙复杂的调控网络来严格控制植物体内的Cu含量。植物Cu转运蛋白COPT家族成员与Cu有很高的亲和力, 能够调节植物对Cu的吸收和转运, 在维持植物体内Cu稳态平衡过程中发挥重要作用。COPT蛋白涉及不同的Cu转运功能, 如从外界环境中摄取Cu、从细胞器中输出Cu、长距离运输Cu以及在不同器官间动用和再分配Cu。此外, COPT蛋白在其它离子的稳态平衡维持、昼夜节律性生物钟调控、植物激素合成和植物对激素信号的感受过程中也发挥重要作用。该文综述了模式植物拟南芥(Arabidopsis thaliana) COPT家族各成员的表达和定位、调控机制以及生物学功能等方面的最新进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号