首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High glucose and increased oxidative stress levels are the known important mediators of diabetic nephropathy. However, the effects of these mediators on tissue damage basically due to extracellular matrix expansion in mesangial cells have yet to be fully examined within the context of early stage diabetic nephropathy. In this study, we attempted to characterize changes in mesangial cells of streptozotocin-induced diabetic rats with a comparative investigation of kidney tissue by using different microscopy techniques. The serum levels of urea and creatinine of diabetic rats, as biomarkers of kidney degeneration, decreased significantly compared to those of age-matched controls. In diabetic rats, there are increased malondialdehyde and oxidized-glutathione levels as well as reduced-glutathione and glutathione-peroxidase activity levels in renal tissue compared to those of the controls. By using light and electron microscopies, we showed that there were marked thickening in Bowman’s membrane and glomerular capillary wall, increased amount of extracellular matrix often occupying Bowman’s space, degenerations in tubules, an increased number of mesangial cells in the network of glomerular capillary walls, and increased amount of lipid accumulation in proximal tubules in the renal tissue of diabetic rats. Our confocal microscopy data confirmed also the presence of irregularity and widened in glomerular capillaries, their attachment to the Bowman’s capsule, degenerated heterochromatin, thickening in foci of glomerular basement membrane, and marked increase in mesangial cells. These results suggest that a detailed structural investigation of kidney tissue provides further information on the important role of mesangial cells in pathogenesis of diabetic nephropathy.  相似文献   

2.
Characteristic pathological changes in the glomeruli in diabetic nephropathy include expansion of the mesangial matrix and thickening of the glomerular basement membrane (GBM). Using an acellular digestion technique combined with scanning electron microscopy, the three-dimensional ultrastructural changes in glomerular extracellular matrices were studied in rats with diabetic glomerulopathy. Diabetes was induced by the intravenous injection of streptozotocin and morphological analyses were performed 3, 6 and 11 months after the injection. Expansion of mesangial area and GBM thickening became evident with time. After treatment with the series of detergents, all cellular components were completely removed leaving the extracellular matrices intact. In normal controls, the mesangial matrix appeared as fenestrated septa with oval or round stomata between the glomerular capillaries. In diabetic glomerulopathy, expansion of mesangial matrix and narrowing of the mesangial fenestrae were observed. These changes in the mesangial matrices seem to play a vital role in the progression of glomerulosclerosis in rat diabetes. A subendothelial thin layer of the GBM was continuous with the mesangial matrix. One cause of GBM thickening in streptozotocin diabetes may be expansion of the mesangial matrix into the peripheral GBM.  相似文献   

3.
Macaca monkeys experimentally infected with Schistosoma japonicum developed a chronic progressive kidney lesion characterized by an increase of mesangial matrix, local glomerular hypercellularity, and local thickening of glomerular basement membrane. Immunofluorescence studies revealed the localization of IgG, IgM, IgA, and IgE immunoglobulins mostly in the mesangial area of the glomeruli accompanied by the deposition of Schistosoma antigens. By electron microscopy, in addition to the local thickening of the glomerular basement membrane, dense homogeneous deposits and those with moth-eaten appearance were detected in the mesangial matrix. These findings suggest that worms in the bloodstream continuously release antigenic materials that stimulate host's antibody response belonging to various immunoglobulin classes including IgE. The produced antibodies and antigens would form immune complexes that deposited in the glomeruli. The increased vascular permeability caused by antigen-IgE antibody interaction may play an important role in the deposition of immune complexes and in the rapid development of kidney injury.  相似文献   

4.
Summary Congenital nephrosis of the Finnish type (CNF) is a hereditary renal disease of unknown aetiology manifested by massive proteinuria of the newborn and unresponsive to any treatment. In this study kidney samples and cultured glomerular mesangial cells from five patients with CNF were studied by indirect immunofluorescence microscopy for the presence and location of major basement membrane matrix (GBM) components. Histological changes of glomeruli ranging from mild thickening of basement membranes to total obliteration and sclerosis were seen. Notably, thickening of the subepithelial layer of Bowman's capsules was regularly seen along with hypercellularity at the juxtaglomerular areas. The matrix components studied (laminin, plasma- and cellular fibronectin, type IV collagen, including the NC-1, alpha-1 and alpha-3 chains, heparan sulphate proteoglycan (HSPG) core protein, thrombospondin) were characteristically seen within the glomeruli. Local thickenings alternating with total loss of epitopes along the GBM were seen, especially with anti-type IV collagen and anti-HSPG antibodies. Sera from CNF patients after transplantation failed to show antibodies against GBM structures in immunofluorescence microscopy, suggesting that no missing epitopes of GBM are introduced with the transplant kidney. Cultured mesangial cells of CNF glomeruli also showed continued in vitro production of the matrix components and their incorporation into the matrix underneath the cell layer.  相似文献   

5.
Eight dogs were immunized with an aqueous-soluble extract of adult Dirofilaria immitis. Subsequent to at least 7-fold increases in antibody titer, the left renal artery of each dog was infused with 6 mg of D. immitis antigen. Fourteen days after infusion, the left kidney was compared to the right kidney and preinfusion biopsies. All dogs developed glomerular lesions in the left kidney characterized by 1 or more of the following: mesangial cell proliferation, neutrophil infiltration, increased periodic acid-Schiff-positive staining of the mesangium and glomerular basement membrane (GBM), fibrin deposition, and thickening of the GBM. Left kidney glomerular immunofluorescence was positive in 7 of the 8 dogs using polyclonal antisera for canine IgG and C3 in a linear or fine granular pattern. Ultrastructural lesions were present in the left kidney of all dogs and consisted of irregular GBM thickening, intramembranous and mesangial electron-dense deposits, and mesangial and endothelial cell proliferation. Antibodies directed against D. immitis antigen were demonstrated in all kidney eluates from the left kidney. The right kidneys of 3 of the dogs developed lesions; however, in comparison to the left kidney, the lesions in the right kidneys were inconsistent, mild, and focal. The histologic findings in the left kidney were similar to those observed in dogs with naturally occurring D. immitis infections. In sham-immunized control dogs, renal arterial infusion of D. immitis antigen did not cause consistent immune complex glomerulonephritis; however, antigen adherence to glomerular capillary walls was observed by immunofluorescent microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Renal specimens from 6 mink with encephalitozoonosis were studied by light and electron microscopy and immunohistochemistry. The glomeruli of affected kidneys had a mesangioproliferative glomerulonephritis which was characterized by an increase in mesangial cells and matrix in most glomeruli. Some glomeruli were partially or completely sclerosed. There were protein or granular casts in the cortical and medullary tubules. Interstitial nephritis, vasculitis and tubular cysts were found. Electron microscopy demonstrated extensive matrix and increased cellularity in the mesangial areas. Glomeruli showed segmentally thickened or wrinkled capillary basement membranes. Electron dense deposits were found in the glomerular basement membranes and mesangium. Peroxidase-anti-peroxidase immunohistochemistry demonstrated that IgG and IgM positive material was present as granular deposits in the glomerular basement membrane and occasionally in the mesangium.  相似文献   

7.
Diabetic nephropathy (DN) is the leading cause of chronic kidney failure. Moreover, DN is associated with elevated cardiovascular morbidity and mortality. DN is characterized by progressive expansion of the mesangial matrix and thickening of the glomerular basement membrane, resulting in the obliteration of glomerular capillaries. Advanced glycation endproducts (AGEs) produced as the result of hyperglycemia are known to stimulate the production of extracellular matrix (ECM) proteins, resulting in glomerulosclerosis. Exposure of cultured mesangial cells to AGEs results in a receptor-mediated upregulation of mRNA and protein secretion of type IV collagen (Col4), which is a major component of ECM. Here we review recent novel insights into the pathogenesis and diagnosis of DN, with a special emphasis on the emerging concept that diabetic glomerulosclerosis can result from activation of the signaling cascade leading to irreversible ECM overproduction. Finally, we describe signaling pathways involved in the initial change of DN and how these pathways can be manipulated for therapeutic benefit.  相似文献   

8.
Kidney biopsies from 23 bitches with pyometra and an entire kidney from four pyometra bitches were examined by light microscopy. Kidney tissue was also taken from three bitches at different intervals after ovariohysterectomy for pyometra. All the pyometra bitches had membranous glomerulonephritis or mixed proliferative and membranous glomerulonephritis. Two of the bitches had intraglomerular hyaline nodules resembling those seen in conjunction with diabetes in human beings. The degree of glomerular damage could be correlated with the reduction in glomerular filtration rate determined by function tests. The proximal tubules generally contained numerous hyaline droplets but the degree of this change could not be correlated to the degree of glomerular damage. A yellow pigment, a lipofuscin, was regularly present in the proximal tubules as well as epithelial proliferation and mitoses. Focal atrophy of tubules also occurred, presumably because of obliteration of glomeruli. The cortical interstitium contained collections of mature and immature plasma cells, often surrounding the glomeruli. When the kidneys from three bitches were examined after ovariohysterectomy for pyometra, the glomerular damage in two had regressed to leave only slight thickening of the capillary walls. In the third bitch, examined only 14 days after ovariohysterectomy, healing was partial. Kidney tissue from five bitches was also examined by electron microscopy. The glomerular endothelial cells were swollen and the basement membrane was grealy thickened. With more severe degrees of glomerular damage, an electron-dense material was deposited along the inner surface of the basement membrane and the swollen mesangial cells contained numerous inclusions. There was focal fusion of the foot processes of the glomerular epithelial cells; in one bitch with heavy proteinuria, the fusion was widespread. The proximal tubules contained numerous protein absorption droplets representing resorbed protein. The tubular basement membrane at all levels was thickened. Because of similarities with some other types of renal damage (nephrotoxic nephritis in dogs and acute proliferative glomerulonephritis in human beings), the possibility is broached that the renal lesion in pyometra is the result of an immunobiological process.  相似文献   

9.
Beef liver catalase was injected intravenously into mice, and its distribution in the kidney, myocardium, and liver was studied with the electron microscope. A specific and relatively sensitive method was developed for its ultrastructural localization, based on the peroxidatic activity of catalase and employing a modified Graham and Karnovsky incubation medium. The main features of the medium were a higher concentration of diaminobenzidine, barium peroxide as the source of peroxide, and pH of 8.5. Ultrastructurally, the enzyme was seen to permeate the endothelial fenestrae and basement membranes of tubular and glomerular capillaries of the kidney. The urinary space and tubular lumina contained no reaction product. In the myocardial capillaries, the tracer filled the pinocytotic vesicles but did not diffuse across the intercellular clefts of the endothelium. In liver, uptake of catalase was seen both in hepatocytes and in Kupffer cells.  相似文献   

10.
The distribution of basement membrane glycoproteins (type IV collagen, laminin, fibronectin, and proteoglycans) was studied in foetal rat kidney by immunohistochemical techniques using polyclonal antibodies. From the first stages of nephron differentiation, all these glycoproteins were detectable by immunofluorescence in the tubular and glomerular basement membranes and in the mesangial matrix. As differentiation proceeded, labelling of glycoproteins progressively intensified, except for that of fibronectin, which gradually decreased in the glomerular basement membrane (GBM) and was barely observable at full differentiation. With immunoperoxidase staining in electron microscopy, all glycoproteins were seen to be widely dispersed in the spaces between the epithelial and endothelial glomerular cells so long as the GBM remained a loose structure. However, after it became a compact, 3-layered formation, type IV collagen and laminin were distributed throughout the GBM, whereas proteoglycans and anionic sites appeared as 2 rows of granules confined to the laminae rarae.  相似文献   

11.
Affinity-purified rabbit antibodies specific for collagen types I, III, AB2 and for a partially characterized type IV collagen derived from a murine tumor were used to study the distribution of collagens in the normal mouse kidney. Immunofluorescence staining of conventional frozen sections demonstrated that types I and III were present in bundles around large vessels and in fibers surrounding glomeruli and tubules, whereas types IV and AB2 were distributed in a linear fashion along basement membranes of tubules, glomeruli, and Bowman's capsule and in the mesangial stalk. The distribution of types IV nd AB2 was examined at the ultrastructural level by staining of 600- to 800-A thick frozen sections with a three-stage procedure employing specific collagen antibodies, biotinyl sheep antirabbit IgG, and avidin-ferritin conjugates. Labeling by this procedure demonstrated codistribution of types AB2 and the putative type IV in all three basement membranes. In addition, mesangial matrix was shown to contain both of these collagen types. These results support recent biochemical evidence of collagen heterogeneity in basement membranes, and also support the concept of a structural relationship between mesangial matrix and glomerular basement membranes.  相似文献   

12.
Immunoglobulin A (IgA) nephropathy shows great variability regarding the histological features of the lesions of human renal glomeruli. In the present study, the quick-freezing and deep-etching (QF-DE) method was used to analyze the glomerular ultrastructure of biopsied kidney tissues from children with IgA nephropathy. Biopsied renal tissues were routinely prepared for light microscopy, immunofluorescence microscopy, conventional electron microscopy, and replica electron microscopy. The three-dimensional ultrastructure of glomeruli of the kidney was clearly observed by using the QF-DE method. Three layers of glomerular basement membranes, i.e., middle, inner and outer layers, were clearly detected in the replica electron micrographs. The middle layer was 343.0+/-24.2 nm (n=20) in width and formed polygonal meshwork structures. We also observed slit diaphragms, electron-dense mesangial deposits, and increased amounts of mesangial matrix and foot process effacement. Many delicate filaments were found to be distributed from the apical to the bottom portions between neighboring foot processes. The ultrastructural difference between the replica electron micrographs and conventional electron micrographs was found to be especially marked in the appearance of foot processes and connecting filaments between the neighboring foot processes. The examination of extracellular matrix changes, as revealed at high resolution by the QF-DE method, gave us some morphofunctional information relevant to the mechanism of proteinuria with IgA nephropathy.  相似文献   

13.
Diabetic nephropathy: mechanisms of renal disease progression   总被引:5,自引:0,他引:5  
Diabetic nephropathy is characterized by excessive amassing of extracellular matrix (ECM) with thickening of glomerular and tubular basement membranes and increased amount of mesangial matrix, which ultimately progress to glomerulosclerosis and tubulo-interstitial fibrosis. In view of this outcome, it would mean that all the kidney cellular elements, i.e., glomerular endothelia, mesangial cells, podocytes, and tubular epithelia, are targets of hyperglycemic injury. Conceivably, high glucose activates various pathways via similar mechanisms in different cell types of the kidney except for minor exceptions that are related to the selective expression of a given molecule in a particular renal compartment. To begin with, there is an obligatory excessive channeling of glucose intermediaries into various metabolic pathways with generation of advanced glycation products (AGEs), activation of protein kinase C (PKC), increased expression of transforming growth factor-beta (TGF-beta), GTP-binding proteins, and generation of reactive oxygen species (ROS). The ROS seem to be the common denominator in various pathways and are central to the pathogenesis of hyperglycemic injury. In addition, there are marked alterations in intraglomerular hemodynamics, i.e., hyperfiltration, and this along with metabolic derangements adversely compounds the hyperglycemia-induced injury. Here, the information compiled under various subtitles of this article is derived from an enormous amount of data summarized in several excellent literature reviews, and thus their further reading is suggested to gain in-depth knowledge of each of the subject matter.  相似文献   

14.
Type XV and type XVIII collagens are classified as part of multiplexin collagen superfamily and their C-terminal parts, endostatin and restin, respectively, have been shown to be anti-angiogenic in vivo and in vitro. The alpha1(XV) and alpha1(XVIII) collagen chains are reported to be localized mainly in the basement membrane zone, but their distributions in blood vessels and nonvascular tissues have yet to be thoroughly clarified. In the present study, we raised monoclonal antibodies against synthetic peptides of human alpha1(XV) and alpha1(XVIII) chains and used them for extensive investigation of the distribution of these chains. We came to the conclusion that nonvascular BMs contain mainly one of two types: subepithelial basement membranes that contained type XVIII in general, or skeletal and cardiac muscles that harbored mainly type XV. But basement membranes surrounding smooth muscle cells in vascular tissues contained one or both of them, depending on their locations. Interestingly, continuous capillaries contained both type XV and type XVIII collagens in their basement membranes; however, fenestrated or specialized capillaries such as glomeruli, liver sinusoids, lung alveoli, and splenic sinusoids expressed only type XVIII in their basement membranes, lacking type XV. This observation could imply that different functions of basement membranes in various tissues and organs use different mechanisms for the endogenous control of angiogenesis.  相似文献   

15.
A morphometric study was undertaken to examine age-related changes in glomerular ultrastructure and anionic sites in ddY male mice at various ages. A progressive increase in glomerular extracellular matrices, including thickening of the glomerular basement membrane (GBM), formation of GBM nodules, and mesangial matrix increase, was found to be the primary age-related ultrastructural change in aging mice; there were also electron-dense deposits in mesangial and subepithelial regions. The extent of GBM thickening in mice was less than was reported in rats. Rather, the GBM nodules, which had the same electron density as the lamina densa (LD) and protruded on the subepithelial side of the GBM, were more striking. Quantitative evaluation showed that GBM thickness, number and size of GBM nodules, and the area of the mesangial matrix were significantly correlated with the age of the mice. The distribution of anionic sites in the glomeruli of aging animals was described for the first time. No statistically significant differences were noted between the number of glomerular anionic sites in the different age groups. These results indicate that the increase in glomerular extracellular matrices reported in aged rats was also present in aged mice, although the extent of various changes was different. The results also indicate that this increase in glomerular extracellular matrices with age was not accompanied by significant alteration in glomerular anionic sites.  相似文献   

16.
Affinity-purified rabbit antibodies specific for two large noncollagenous gycoproteins--laminin and fibronectin--were used to study the distribution of these proteins in normal murine kidneys. Immunofluorescence staining of conventional frozen sections demonstrates fibronectin within mesangial areas of the glomerulus. Laminin is also found in mesangial areas. However, it also appears to be distributed in typical basement membranelike patterns on glomerular and tubular basement membranes and Bowman's capsule. At the ultrastructural level, by labeling 600-800-A thick frozen sections with a three-stage procedure consisting of specific antibodies, biotinyl sheep anti-rabbit IgG, and avidin-ferritin conjugates, fibronectin is present ony in the mesangial matrix and is specifically localized to areas immediately surrounding mesangial cell processes. Laminin, on the other hand, is found uniformly distributed throughout tubular basement membranes, the mesangial matrix, and Bowman's capsule. In glomerular basement membranes, laminin labeling is restricted to the lamina rara interna and adjacent regions of the lamina densa.  相似文献   

17.
Although cholecystokinin is a regulatory peptide with a predominant role in the brain and the gastrointestinal tract, there is an increasing evidence for its role in the kidney. The aim of this study was to reveal morphological changes in the structure of kidney of mice with cholecystokinin overexpression by means of light, transmission and scanning electron microscope, and atomic force microscopy. Using immunohistochemistry the expression of important basement membrane proteins collagen IV, laminin and fibronectin, as well the distribution of cholecystokinin-8 in the renal structures was evaluated. The altered morphology of kidneys of mice with cholecystokinin overexpression was seen by all microscopic techniques used. The renal corpuscles were relatively small with narrow capsular lumen. The basement membranes of renal tubules were thickened and the epithelial cells were damaged, which was more pronounced for distal tubules. Characteristic feature was the increased number of vesicles seen throughout the epithelial cells of proximal and especially in distal tubules reflecting to the enhanced cellular degeneration. The relative expression of laminin but not collagen IV in the glomerular basement membrane was higher than in the tubular basement membranes. The content of fibronectin, in opposite, was higher in tubular membranes. Cholecystokinin-8 was clearly expressed in the glomeruli, in Bowman’s capsule, in proximal and distal tubules, and in collecting ducts. Ultrastructural studies showed irregularly thickened glomerular basement membranes to which elongated cytopodia of differently shaped podocytes were attached. As foot processes were often fused the number of filtration pores was decreased. In conclusion, cholecystokinin plays important role in renal structural formation and in functioning as different aspects of urine production in mice with cholecystokinin overexpression are affected-the uneven glomerular basement membrane thickening, structural changes in podocytes and in filtration slits affect glomerular filtration, while damaged tubular epithelial cells and changed composition of thickened tubular basement membranes affect reabsorption.  相似文献   

18.
To demonstrate that Ochratoxin A can cause kidney failure as the kidney is the primary target for OTA cytotoxicity. Ochratoxin A (OTA) is a mycotoxin found in our food. The cytotoxic effect of a low cumulative dose of OTA on the renal corpuscles of the kidney tissue has been investigated in this report. This study was based on two groups in which weaning albino rats were used: (1) control; (2) OTA-treated rats (289 μg/kg/day). After 28 days of treatment, a significant decrease in body weight, kidney weight and relative weight were detected in OTA treated rats. Serum creatinine and urea level were slightly elevated. These results revealed significant histological as well as ultrastructral lesions in the OTA treated group. The lesions included global congestion in the renal tissue and loss of demarcation between the cortex and medulla. The normal architecture of the renal corpuscles was destroyed and most of the corpuscles lost their ordinary look. The most apparent histopathological changes were urinary space disappearance and hypercellularity. In addition, congested, undifferentiated, atrophied, hypertrophied, fragmented, sclerotic, degenerated, and obliterated renal corpuscles were distinct. The ultrastructural lesions observed in the renal corpuscles in OTA on treated rats included; proliferation and swelling of the endothelial cells with occasional loss of fenestrae; narrowing of the capillary lumen; damaged podocytes with deteriorated secondary foot processes, hypertrophied and proliferated mesangial cells with expanded mesangial matrix. The endothelium was clearly defected and vacuolated, and lost its fenestrations in many glomerular capillaries. In addition, the glomerular basement membrane (GBM) became visibly thickened and tortuous. Necrotic glomerular cells were frequently observed. Pre-apoptotic cells were also seen. It was concluded that the exposure to relatively low OTA concentrations induced significant lesions to the renal corpuscles. Moreover, it activated oxidative damage and necrosis which can cause extensive damage to the kidney and ultimately kidney failure.  相似文献   

19.
The phagocytic capacity of the glomerular mesangial cells in 42 rats was inhibited by the prolonged injection of PVA. Morphometric evaluation of electron microscopic sections showed that this treatment leads to an accelerated thickening of the lamina densa of the glomerular basement membrane and of the mesangial matrix (early glomerulosclerosis). This suggests that a disturbance of lysosomal degradation can lead to glomerulosclerosis, and that the possibility of mesangial dysfunction should always be considered as a possible factor in the pathogenesis of all types of diffuse glomerulosclerosis.  相似文献   

20.
The purpose of the study was to investigate the development of microangiopathic complications in North African sand rats with diabetes induced by a long-term standard laboratory diet. Hyperinsulinaemic rats, whether non-diabetic obese or diabetic, developed capillary basement membrane (CBM) thickening in the skin; in insulin-dependent animals, this change was diffuse. Many PAS positive areas were demonstrated in skeletal muscle and myocardium, together with evidence of microangiopathy; the primary myocardial lesion in insulin-dependent disease was ischaemic fibrosis. The kidney was also affected with marked basement membrane thickening in Bowman's capsule and glomerular capillaries; glomerulosclerosis and tubular changes were found in insulin-dependent disease. No evidence of diabetic retinopathy was found, and there was a high incidence of cataract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号