首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S E Hamilton  M Recny  L P Hager 《Biochemistry》1986,25(25):8178-8183
Pyruvate oxidase from Escherichia coli is a peripheral membrane associated enzyme which is activated by lipids. We have investigated the high-affinity lipid binding site associated with lipid activation of pyruvate oxidase by covalent attachment of [14C]lauric acid to the enzyme. Lauric acid is bound stoichiometrically (1 mol/mol of active sites), and the enzyme is essentially irreversibly activated. Mild tryptic digestion of the modified enzyme shows that the lauric acid is bound within the last 100 residues of the 572-residue monomer. Digestion with thermolysin releases two closely related peptides, A and B, in approximately equal amounts. Comparison of the amino acid composition of peptide A with the entire sequence of the protein shows that peptide A corresponds to the sequence from Ala-543 to Ile-554. The analysis of peptide B is very similar to that of A. Limited sequence analysis of peptide B shows that residue 1 is Ala and residue 2 is labeled. These results support the assignment of residue 1 in peptide B as Ala-543 and indicate that lauric acid is bound to Lys-544. Previous work in this laboratory has shown that pyruvate oxidase may be activated independently of lipids by mild protease digestion. Proteolytic activation is accompanied by the release of a small peptide (residues 550-572) from the carboxyl terminus of the protein. The present work locates the lipid binding site very close to this peptide. The significance of these results for the mechanism of activation of pyruvate oxidase and other lipid-activated systems is discussed.  相似文献   

2.
In order to understand further the autogenous regulation of Escherichia coli secA translation, we have set up a purified system to study the binding of SecA protein to portions of its mRNA. Specific SecA protein-RNA binding was demonstrated by UV cross-linking, filter binding, and gel shift assays. Use of the filter binding assay allowed optimization of binding, which was influenced by Mg2+ and ATP concentrations, and a measurement of the affinity of this interaction. A nested series of RNAs lacking either 5' or 3' portions of geneX-secA sequences were used to localize the SecA protein binding site to sequences around the geneX-secA intergenic region. These studies imply that SecA protein directly regulates its own translation by a specific RNA binding activity that presumably blocks translational initiation.  相似文献   

3.
We present evidence that repair of DNA damage induced by decay of incorporated 125I after replication of the labeled duplex of Escherichia coli requires the recA+ gene function. Furthermore, only about half of the cells survive after label segregation even when that repair function is present. Our results support the possibility that repair of 125I decay-induced lesions is asymmetric, being limited to damage initiated in only one of the two strands of the DNA duplex.  相似文献   

4.
5.
6.
The expression of the gene encoding Escherichia coli threonyl-tRNA synthetase (ThrRS) is negatively autoregulated at the translational level. ThrRS binds to its own mRNA leader, which consists of four structural and functional domains: the Shine–Dalgarno (SD) sequence and the initiation codon region (domain 1); two upstream hairpins (domains 2 and 4) connected by a single-stranded region (domain 3). Using a combination of in vivo and in vitro approaches, we show here that the ribosome binds to thrS mRNA at two non-contiguous sites: region −12 to +16 comprising the SD sequence and the AUG codon and, unexpectedly, an upstream single-stranded sequence in domain 3. These two regions are brought into close proximity by a 38-nucleotide-long hairpin structure (domain 2). This domain, although adjacent to the 5' edge of the SD sequence, does not inhibit ribosome binding as long as the single-stranded region of domain 3 is present. A stretch of unpaired nucleotides in domain 3, but not a specific sequence, is required for efficient translation. As the repressor and the ribosome bind to interspersed domains, the competition between ThrRS and ribosome for thrS mRNA binding can be explained by steric hindrance.  相似文献   

7.
The histidine at position 55 of the amino acid sequence of the Escherichia coli single-stranded DNA binding protein was replaced by tyrosine, glutamic acid, lysine, phenylalanine, and isoleucine. The properties of the mutant proteins were determined using analytical ultracentrifugation, NMR spectroscopy, gel filtration, and fluorimetric detection of their single-stranded DNA binding ability. While the phenylalanine and isoleucine substitutions did not change the properties of the protein measurably, tyrosine and lysine mutants dissociate into subunits and loose some of their binding affinity for poly(dT). For the lysine mutant we show by electron microscopy that the protein, although fully dissociated and possibly denatured in the free state, binds to poly(dT) as a tetramer indistinguishable from the wild-type protein. The process of tetramerization as observed via single-stranded DNA binding ability is composed of a variety of steps ranging in time from some milliseconds to several hours; it probably involves several forms of dissociated and non-native protein.  相似文献   

8.
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the NN transition is strongly correlated with the analogous EE transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.  相似文献   

9.
10.
11.
12.
Shikimate kinase II was purified to near homogeneity from an Escherichia coli strain which overproduced the enzyme. The apparent Km of this isoenzyme for shikimate was 200 microM, and for ATP it was 160 microM. The Km for shikimate is approximately 100-fold lower than the Km of shikimate kinase I, suggesting that shikimate kinase II is the isoenzyme normally functioning in aromatic biosynthesis. Shikimate kinase II is dependent on metal ions for activity.  相似文献   

13.
姚远  乔佳鑫  李静  李慧  莫日根 《遗传》2015,37(3):302-308
二组分体作为一种信号转导系统在细菌中普遍存在,能够感知外界环境变化并做出应答。细菌中CckA/CtrA、ArcA/ArcB和PhoP/PhoQ二组分体与DNA复制起始和细胞分裂相关,但目前还未见TorS/TorR二组分体对细胞周期及DNA复制影响的相关报道。大肠杆菌TorS/TorR二组分体能够监测细胞周围氧化三甲胺(Trimethylamine oxide, TMAO)的浓度变化,但其是否影响DNA复制起始呢?文章利用流式细胞仪检测了ΔtorS和ΔtorR突变体菌株的复制式样。结果发现,ΔtorS突变菌株每个细胞复制起始原点数目和倍增时间与野生型细胞一致,而ΔtorR突变菌株每个细胞复制起始原点数目多于野生型细胞,说明复制起始发生时间比野生型细胞早。但是过表达TorR蛋白或者共同表达TorS和TorR蛋白都不能使ΔtorR突变体表型恢复为野生型表型。而在野生型和ΔtorR突变细胞中过表达SufD蛋白能使复制起始提早发生,在ΔtorR和ΔsufD双突变细胞中复制起始延迟。所以,TorR可能通过改变sufD基因的表达来间接影响染色体复制起始。  相似文献   

14.
The strictly conserved arginine residue proximal to the active site tyrosine of type IA topoisomerases is required for the relaxation of supercoiled DNA and was hypothesized to be required for positioning of the scissile phosphate for DNA cleavage to take place. Mutants of recombinant Yersinia pestis topoisomerase I with hydrophobic substitutions at this position were found in genetic screening to exhibit a dominant lethal phenotype, resulting in drastic loss in Escherichia coli viability when overexpressed. In depth biochemical analysis of E. coli topoisomerase I with the corresponding Arg-321 mutation showed that DNA cleavage can still take place in the absence of this arginine function if Mg(2+) is present to enhance the interaction of the enzyme with the scissile phosphate. However, DNA rejoining is inhibited in the absence of this conserved arginine, resulting in accumulation of the cleaved covalent intermediate and loss of relaxation activity. These new experimental results demonstrate that catalysis of DNA rejoining by type IA topoisomerases has a more stringent requirement than DNA cleavage. In addition to the divalent metal ions, the side chain of this arginine residue is required for the precise positioning of the phosphotyrosine linkage for nucleophilic attack by the 3'-OH end to result in DNA rejoining. Small molecules that can interfere or distort the enzyme-DNA interactions required for DNA rejoining by bacterial type IA topoisomerases could be developed into novel antibacterial drugs.  相似文献   

15.
16.
Bacterial glycogen/starch synthases are retaining GT-B glycosyltransferases that transfer glucosyl units from ADP-Glc to the non-reducing end of glycogen or starch. We modeled the Escherichia coli glycogen synthase based on the coordinates of the inactive form of the Agrobacterium tumefaciens glycogen synthase and the active form of the maltodextrin phosphorylase, a retaining GT-B glycosyltransferase belonging to a different family. In this model, we identified a set of conserved residues surrounding the sugar nucleotide substrate, and we replaced them with different amino acids by means of site-directed mutagenesis. Kinetic analysis of the mutants revealed the involvement of these residues in ADP-Glc binding. Replacement of Asp21, Asn246 or Tyr355 for Ala decreased the apparent affinity for ADP-Glc 18-, 45-, and 31-fold, respectively. Comparison with other crystallized retaining GT-B glycosyltransferases confirmed the striking similarities among this group of enzymes even though they use different substrates.  相似文献   

17.
18.
19.
We have performed a detailed analysis of streptavidin variants with altered specificity towards desthiobiotin. In addition to changes in key residues which widen the ligand binding pocket and accommodate the more structurally flexible desthiobiotin, the data revealed the role of a key, non-active site mutation at the base of the flexible loop (S52G) which slows dissociation of this ligand by approximately sevenfold. Our data suggest that this mutation results in the loss of a stabilizing contact which keeps this loop open and accessible in the absence of ligand. When this mutation was introduced into the wild-type protein, destabilization of the opened loop conferred a ~10-fold decrease in both the on-rate and off-rate for the ligand biotin-4-fluoroscein. A similar effect was observed when this mutation was added to a monomeric form of this protein. Our results provide key insight into the role of the streptavidin flexible loop in ligand binding and maintaining high affinity interactions.  相似文献   

20.
The dinB operon and spontaneous mutation in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Apparently conflicting data regarding the role of SOS-inducible, error-prone DNA polymerase IV (DinB) in spontaneous mutation are resolved by the finding that mutation is reduced by a polar allele with which dinB and neighboring yafN are deleted but not by two nonpolar dinB alleles. We demonstrate the existence of a dinB operon that contains four genes, dinB-yafN-yafO-yafP. The results imply a role for yafN, yafO, and/or yafP in spontaneous mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号