首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.The transport of DNA across membranes by bacteria occurs during sporulation, during cytokinesis, directly from other cells and from the environment. This review addresses the question “how is the DNA polyanion transferred processively across the hydrophobic membrane barrier”?DNA transport must occur through water-filled channels, at least conceptually addressing the problem posed by the hydrophobic membrane. DNA transporters presumably use metabolic energy directly or a coupled-flow (symporter or antiporter) mechanism to drive DNA processively through the channel. It is possible that a Brownian ratchet mechanism, in which directionality is imposed on a diffusive process, also contributes to transport.In this article, we will consider several DNA transport systems. We will begin with the simplest one, namely the FtsK/SpoIIIE system that is involved in cell division and sporulation. We will then turn to the more complex, multiprotein DNA uptake systems that accomplish genetic transformation (the uptake of environmental DNA from the environment) and the conjugation systems of Gram-negative bacteria that mediate the unidirectional transfer of DNA between cells. In each case we will discuss the proteins involved, their actions and the sources of energy that drive transport. Space limitations prevent discussion of other relevant topics, such as DNA transport during bacteriophage infection and more than a brief reference to conjugation in Gram-positive bacteria.  相似文献   

2.
3.
In bacteria, septum formation frequently initiates before the last steps of chromosome segregation. This is notably the case when chromosome dimers are formed by homologous recombination. Chromosome segregation then requires the activity of a double‐stranded DNA transporter anchored at the septum by an integral membrane domain, FtsK. It was proposed that the transmembrane segments of proteins of the FtsK family form pores across lipid bilayers for the transport of DNA. Here, we show that truncated Escherichia coli FtsK proteins lacking all of the FtsK transmembrane segments allow for the efficient resolution of chromosome dimers if they are connected to a septal targeting peptide through a sufficiently long linker. These results indicate that FtsK does not need to transport DNA through a pore formed by its integral membrane domain. We propose therefore that FtsK transports DNA before membrane fusion, at a time when there is still an opening in the constricted septum.  相似文献   

4.
DNA transport is an essential life process. From chromosome separation during cell division or sporulation, to DNA virus ejection or encapsidation, to horizontal gene transfer, it is ubiquitous in all living organisms. Directed DNA translocation is often energetically unfavorable and requires an active process that uses energy, namely the action of molecular motors. In this review we present recent advances in the understanding of three molecular motors involved in DNA transport in prokaryotes, paying special attention to recent studies using single-molecule techniques. We first discuss DNA transport during cell division, then packaging of DNA in phage capsids, and then DNA import during bacterial transformation.  相似文献   

5.
The VirB proteins of Agrobacterium tumefaciens form a transport pore to transfer DNA from bacteria to plants. The assembly of the transport pore will require interaction among the constituent proteins. The identification of proteins that interact with one another can provide clues to the assembly of the transport pore. We studied interaction among four putative transport pore proteins, VirB7, VirB8, VirB9 and VirB10. Using the yeast two-hybrid assay, we observed that VirB8, VirB9, and VirB10 interact with one another. In vitro studies using protein fusions demonstrated that VirB10 interacts with VirB9 and itself. These results suggest that the outer membrane VirB7-VirB9 complex interacts with the inner membrane proteins VirB8 and VirB10 for the assembly of the transport pore. Fusions that contain small, defined segments of the proteins were used to define the interaction domains of VirB8 and VirB9. All interaction domains of both proteins mapped to the N-terminal half of the proteins. Two separate domains at the N- and C-terminal ends of VirB9 are involved in its homotypic interaction, suggesting that VirB9 forms a higher oligomer. We observed that the alteration of serine at position 87 of VirB8 to leucine abolished its DNA transfer function. Studies on the interaction of the mutant protein with the other VirB proteins showed that the VirB8S87L mutant is defective in interaction with VirB9. The mutant, however, interacted efficiently with VirB8 and VirB10, suggesting that the VirB8-VirB9 interaction is essential for DNA transfer.  相似文献   

6.
T-DNA转移研究进展   总被引:5,自引:0,他引:5  
植物遗传转化技术近年在农作物性状改良、植物生物反应器利用以及基因功能鉴定等方面得到了广泛的应用.T-DNA转移是植物细胞农杆菌介导遗传转化整合和表达外源基因的基础.农杆菌Ti质粒vir基因编码蛋白、农杆菌一些染色体基因编码蛋白及植物细胞一些基因编码蛋白或因子均参与T-DNA转移.转移过程包括农杆菌对植物细胞的识别、附着,细菌对植物信号物质的感受,细菌vir基因的诱导表达,T复合体的形成,跨膜运输,进核运输和整合等一序列过程.植物细胞因子与农杆菌T-DNA转移相关蛋白的相互作用最近被认为在T-DNA转移过程中起重要作用.  相似文献   

7.
Agrobacterium uses a mechanism similar to conjugation for trans-kingdom transfer of its oncogenic T-DNA. A defined VirB/VirD4 Type IV secretion system is responsible for such a genetic transfer. In addition, certain virulence proteins as VirE2 can be mobilized into host cells by the same apparatus. VirE2 is essential to achieve plant but not yeast transformation. We found that the limited host range plasmid CloDF13 can be recruited by the virulence apparatus of Agrobacterium for transfer to eukaryotic hosts. As expected the VirB transport complex was required for such trans-kingdom DNA transfer. However, unexpectedly, the coupling factor VirD4 turned out to be necessary for transfer to plants but not for transport into yeast. The CloDF13 encoded coupling factor (Mob) was essential for transfer to both plants and yeast though. This is interpreted by the different specificities of Mob and VirD4. Hence, Mob being required for the transport of the CloDF13 transferred DNA (to both plants and yeast) and VirD4 being required for transport of virulence proteins such as VirE2. Nevertheless, the presence of the VirE2 protein in the host plant was not sufficient to restore the deficiency for VirD4 in the transforming bacteria. We propose that Mob functions encoded by the plasmid CloDF13 are sufficient for DNA mobilization to eukaryotic cells but that the VirD4-mediated pathway is essential to achieve DNA nuclear establishment specifically in plants. This suggests that other Agrobacterium virulence proteins besides VirE2 are translocated and essential for plant transformation.  相似文献   

8.
pSAM2 is an 11 kb integrative element from Streptomyces ambofaciens that is capable of conjugal transfer. A system based on differential DNA modification by SalI methyltransferase was used to localize pSAM2 in the donor or recipient strain, and thus to determine the various steps associated with transfer. Initiation (i.e. excision and replication of pSAM2 in the donor) occurs a few hours after mating with a recipient strain. pSAM2 replicates in the recipient strain, spreads within the mycelium and then integrates into the chromosome. Transfer generally involves single-stranded DNA. In Streptomyces, only a few genes, such as traSA for pSAM2, are required for conjugal transfer. Using the differential sensitivity to the SalI restriction-modification system of transfers involving single- and double-stranded DNA, we found that pSAM2 was probably transferred to the recipient as double-stranded DNA. This provides the first experimental evidence for the transfer of double-stranded DNA during bacterial conjugation. Thus, TraSA, involved in pSAM2 transfer, and SpoIIIE, which is involved in chromosome partitioning in Bacillus subtilis, display similarities in both sequence and function: both seem to transport double-stranded DNA actively, either from donor to recipient or from mother cell to prespore.  相似文献   

9.
L J Wu  J Errington 《The EMBO journal》1997,16(8):2161-2169
The 787 amino acid SpoIIIE protein of Bacillus subtilis is required for chromosome partitioning during sporulation. This process differs from vegetative chromosome partitioning in that it occurs after formation of the septum, apparently by transfer of the chromosome through the nascent septum in a manner reminiscent of plasmid conjugation. Here we show that SpoIIIE is associated with the cell membrane, with its soluble C-terminal domain located inside the cell. Immunofluorescence microscopy using affinity-purified anti-SpoIIIE antibodies shows that SpoIIIE is targeted near the centre of the asymmetric septum, in support of a direct role for SpoIIIE in transport of DNA through the septum. We also report on the isolation of a mutation affecting the N-terminal hydrophobic domain of SpoIIIE that interferes with targeting to the septum and blocks DNA transfer. This mutation also causes de-localization of the activity of the normally prespore-specific sigma factor, sigmaF, consistent with the notion that SpoIIIE can form a seal between the chromosomal DNA and the leading edge of the division septum.  相似文献   

10.
Agrobacterium tumefaciens VirD4 is essential for DNA transfer to plants. VirD4 presumably functions as a coupling factor that facilitates communication between a substrate and the transport pore. To serve as a coupling protein, VirD4 may be required to localize near the transport apparatus. In a previous study, we observed that several constituents of the transport apparatus localize to the cell membranes. In this study, we demonstrate that VirD4 has a unique cellular location. In immunofluorescence microscopy, cells probed with anti-VirD4 antibodies had foci of fluorescence primarily at the cell poles, indicating that VirD4 localizes to the cell pole. Polar location of VirD4 was not dependent on T-DNA processing, the formation of the transport apparatus and the presence of other Vir proteins. VirD4 is an integral membrane protein with one periplasmic domain. The large cytoplasmic region contains a nucleotide-binding domain. To investigate the role of these domains in DNA transfer, we introduced mutations in virD4 and studied the effect of a mutation on substrate transfer. A deletion of most of the periplasmic domain as well as the alterations of glycine 151 to serine and lysine 152 to alanine led to the complete loss of DNA transfer, indicating that both domains are essential for substrate transfer. Subcellular localization of the mutant proteins indicated that both the periplasmic and the nucleotide-binding domains are required for polar localization of VirD4. The periplasmic domain mutant VirD4Delta36-61 was distributed throughout the cell membrane, whereas the nucleotide binding site mutant VirD4G151S localized to sites other than the cell poles. Polar location of VirD4 suggests a role for the cell pole in DNA transfer.  相似文献   

11.
12.
In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.  相似文献   

13.
Comparative genome analyses revealed a massive DNA exchange between microbes of distant evolutionary lineages. This phenomenon known as horizontal, or lateral, gene transfer has a tremendous impact in the evolution of prokaryotes. Here, the process of DNA transport via genetic transformation is discussed. This review will focus on the process of DNA uptake mediated by type IV pilin-like proteins in Gram-positive and Gram-negative bacteria. Three tentative models of transformation machineries comprising components similar to proteins of type IV pili and type II secretion are presented. A comparative discussion of the structure of DNA translocators and the underlying mechanism of transfer of free DNA in mesophilic and extremely thermophilic bacteria highlights conserved and distinctive features of the DNA translocators in mesophilic and thermophilic bacteria.  相似文献   

14.
The plasmids R1162 and pSC101 have origins of conjugative transfer (oriTs) and corresponding relaxases that are closely related. The oriTs are made up of a highly conserved core, where DNA is cleaved by the relaxase prior to transfer, and an inverted repeat that differs in size and sequence. We show that in each case the seven base pairs adjacent to the core and within one arm of the inverted repeat are sufficient to determine specificity. Within this DNA there are three AT base pairs located 4 bp from the core. Mutations in the AT base pairs suggest that the relaxase makes essential contacts at these locations to the minor groove of the DNA. The remaining four bases are different for each oriT and are both necessary and sufficient for stringent recognition of oriT by the pSC101 mobilization proteins. In contrast, the R1162 mobilization proteins have a much more relaxed requirement for the base sequence of this specificity region. As a result, the R1162 mobilization proteins can initiate transfer from a variety of sites, including those derived from the chromosome. The R1162 mobilization proteins could therefore contribute to the horizontal gene transfer of DNA from diverse sources.  相似文献   

15.
Many bacteria possess the ability to actively take up DNA from the environment and incorporate it into the chromosome. RecA protein is the key protein achieving homologous recombination. Several of the proteins involved in the transport of DNA across the cell envelope assemble at a single or both cell poles in competent Bacillus subtilis cells. We show that the presumed structure that transports DNA across the cell wall, the pseudopilus, also assembles at a single or both cell poles, while the membrane receptor, ComEA, forms a mobile layer throughout the cell membrane. All other known Com proteins, including the membrane permease, localize again to the cell pole, revealing that the uptake machinery has three distinct layers. In cells having two uptake machineries, one complex is occasionally mobile, with pairs of proteins moving together, suggesting that a complete complex may lose anchoring and become mobile. Overall, the cell pole provides stable anchoring. Only one of two uptake machineries assembles RecA protein, suggesting that only one is competent for DNA transfer. FRAP (fluorescence recovery after photobleaching) analyses show that in contrast to known multiprotein complexes, the DNA uptake machinery forms a highly stable complex, showing little or no exchange with unbound molecules. When cells are converted into round spheroplasts, the structure persists, revealing that the assembly is highly stable and does not require the cell pole for its maintenance. High stability may be important to fulfill the mechanical function in pulling DNA across two cell layers.  相似文献   

16.
Thermus thermophilus HB27 is well known for its extraordinary trait of high frequencies of natural transformation, which is considered a major mechanism of horizontal gene transfer. We show that the DNA translocator of T. thermophilus binds and transports DNA from members of all three domains. These results, together with the data obtained from genome comparisons, suggest that the DNA translocator of T. thermophilus has a major impact in adaptation of Thermus to thermal stress conditions and interdomain DNA transfer in extreme hot environments. DNA transport in T. thermophilus is mediated by a macromolecular transport machinery that consists of at least 16 subunits and spans the cytoplasmic membrane and the entire cell periphery. Here, we have addressed the role of single subunits in DNA binding and transport. PilQ is involved in DNA binding, ComEA, PilF and PilA4 are involved in transport of DNA through the outer membrane and PilM, PilN, PilO, PilA1–3, PilC and ComEC are essential for the transport of DNA through the thick cell wall layers and/or through the inner membrane. These data are discussed in the light of the subcellular localization of the proteins. A topological model for DNA transport across the cell wall is presented.  相似文献   

17.
A new Escherichia coli cell division gene, ftsK.   总被引:5,自引:1,他引:4       下载免费PDF全文
A mutation in a newly discovered Escherichia coli cell division gene, ftsK, causes a temperature-sensitive late-stage block in division but does not affect chromosome replication or segregation. This defect is specifically suppressed by deletion of dacA, coding for the peptidoglycan DD-carboxypeptidase, PBP 5. FtsK is a large polypeptide (147 kDa) consisting of an N-terminal domain with several predicted membrane-spanning regions, a proline-glutamine-rich domain, and a C-terminal domain with a nucleotide-binding consensus sequence. FtsK has extensive sequence identity with a family of proteins from a wide variety of prokaryotes and plasmids. The plasmid proteins are required for intercellular DNA transfer, and one of the bacterial proteins (the SpoIIIE protein of Bacillus subtilis) has also been implicated in intracellular chromosomal DNA transfer.  相似文献   

18.
Recombination protein complex RC-1, purified from calf thymus nuclear extracts, catalyzes cell-free DNA strand transfer and repair of gaps and deletions through DNA recombination. DNA polymerase E, DNA ligase III and a DNA structure-specific endonuclease co-purify with the five polypeptide complex. Here we describe the identification of two hitherto unknown subunits of RC-1. N-terminal amino acid sequences of the 160 and 130 kDa polypeptides display up to 100% identity to proteins of the structural maintenance of chromosomes (SMC) subfamilies 1 and 2. SMC proteins are involved in mitotic chromosome segregation and condensation, as well as in certain DNA repair pathways in fission (rad18 gene) and budding (RHC18 gene) yeast. The assignment was substantiated by immuno-cross-reactivity of the RC-1 subunits with polyclonal antibodies specific for Xenopus laevis SMC proteins. These antibodies, and polyclonal antibodies directed against the bovine 160 and 130 kDa polypeptides, named BSMC1 and BSMC2 (bovine SMC), inhibited RC-1-mediated DNA transfer, indicating that the SMC proteins are necessary components of the reaction. Two independent assays revealed DNA reannealing activity of RC-1, which resides in its BSMC subunits, thereby demonstrating a novel function of these proteins. To our knowledge, this is the first evidence for the association of mammalian SMC proteins with a multiprotein complex harboring, among others, DNA recombination, DNA ligase and DNA polymerase activities.  相似文献   

19.
Conjugation is a paradigmatic example of horizontal or lateral gene transfer, whereby DNA is translocated between bacterial cells. It provides a route for the rapid acquisition of new genetic information. Increased antibiotic resistance among pathogens is a troubling consequence of this microbial capacity. DNA transfer across cell membranes requires a sophisticated molecular machinery that involves the participation of several proteins in DNA processing and replication, cell recruitment, and the transport of DNA and proteins from donor to recipient cells. Although bacterial conjugation was first reported in the 1940s, only now are we beginning to unravel the molecular mechanisms behind this process. In particular, structural biology is revealing the detailed molecular architecture of several of the pieces involved.  相似文献   

20.
A Engelman  F D Bushman    R Craigie 《The EMBO journal》1993,12(8):3269-3275
HIV-1 integrase protein possesses the 3' processing and DNA strand transfer activities that are required to integrate HIV DNA into a host chromosome. The N-, C-terminal and core domains of integrase are necessary for both activities in vitro. We find that certain pairs of mutant integrase proteins, which are inactive when each protein is assayed alone, can support near wild type levels of activity when both proteins are present together in the reaction mixture. This complementation implies that HIV-1 integrase functions as a multimer and has enabled us to probe the organization of the functional domains within active mixed multimers. We have identified a minimal set of functional integrase domains that are sufficient for 3' processing and DNA strand transfer and find that some domains are contributed in trans by separate monomers within the functional complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号