首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
A 16S rRNA-targeted oligonucleotide probe specific for the iron (Fe3+)- and manganese (Mn4+)-reducing bacterium Shewanella putrefaciens was constructed and tested in both laboratory- and field-based hybridization experiments. The radioactively labeled probe was used to detect S. putrefaciens in field samples collected from the water column and sediments of Oneida Lake in New York and its major southern tributary, Chittenango Creek. S. putrefaciens was quantified by (i) hybridization of the probe to bulk RNA extracted from field samples and normalization of the S. putrefaciens-specific rRNA to total eubacterial rRNA, (ii) a colony-based probe hybridization assay, and (iii) a colony-based biochemical assay which detected the formation of iron sulfide precipitates on triple-sugar iron agar. The results of field applications indicated that the three detection methods were comparable in sensitivity for detecting S. putrefaciens in water column and sediment samples. S. putrefaciens rRNA was detected in the surficial layers of the lake and creek sediments, but the levels of S. putrefaciens rRNA were below the detection limits in the lake and creek water samples. The highest concentrations of S. putrefaciens rRNA, corresponding to approximately 2% of the total eubacterial rRNA, were detected in the surficial sediments of Chittenango Creek and at a midlake site where the Oneida Lake floor is covered by a high concentration of ferromanganese nodules. This finding supports the hypothesis that metal-reducing bacteria such as S. putrefaciens are important components in the overall biogeochemical cycling of iron, manganese and other elements in seasonally anoxic freshwater basins.  相似文献   

2.
1. Completion of a large interbasin water transfer system in northern Texas (U.S.A.) provided the opportunity to test the effects of pre-planned, experimental increases (≈×30) in flow on the fish fauna of a small, low-gradient, natural stream that was included as part of the conveyance system. Water from Lake Texoma (Red River basin) was pumped via a 16-km pipeline to the headwaters of Sister Grove Creek (Trinity River basin), which then carried the donor water 50 km downstream to Lake Lavon.
2. Baseline (pre-transfer) data on the composition of fish assemblages at seven stations on the creek or at its confluence with the receiving reservoir were collected monthly for 3 years, and similar data were collected for 2 years during and after trial flows of Lake Texoma water to Sister Grove Creek. We also documented fish abundance at five creek stations immediately before and after three trial flow periods of 10–14 days each in summer and autumn.
3. Multivariate analysis of all routine monthly samples over the 5-year pre- and post-transfer period showed moderate changes in the fish fauna of the creek after initiation of the trial flows. Samples taken within a week before and after the artificial high flows showed little overall change in abundance of individual fish species, but at some stations the quantitative or qualitative change in composition of the local assemblage was substantial.
4. The trial flows lasted 2 weeks or less. Long-term effects of water transfer on the fish fauna of Sister Grove Creek can only be determined after the conveyance system goes into normal operation, with periods of artificial flow of longer duration.  相似文献   

3.
1. Completion of a large interbasin water transfer system in northern Texas (U.S.A.) provided the opportunity to test the effects of pre-planned, experimental increases (≈×30) in flow on the fish fauna of a small, low-gradient, natural stream that was included as part of the conveyance system. Water from Lake Texoma (Red River basin) was pumped via a 16-km pipeline to the headwaters of Sister Grove Creek (Trinity River basin), which then carried the donor water 50 km downstream to Lake Lavon.
2. Baseline (pre-transfer) data on the composition of fish assemblages at seven stations on the creek or at its confluence with the receiving reservoir were collected monthly for 3 years, and similar data were collected for 2 years during and after trial flows of Lake Texoma water to Sister Grove Creek. We also documented fish abundance at five creek stations immediately before and after three trial flow periods of 10–14 days each in summer and autumn.
3. Multivariate analysis of all routine monthly samples over the 5-year pre- and post-transfer period showed moderate changes in the fish fauna of the creek after initiation of the trial flows. Samples taken within a week before and after the artificial high flows showed little overall change in abundance of individual fish species, but at some stations the quantitative or qualitative change in composition of the local assemblage was substantial.
4. The trial flows lasted 2 weeks or less. Long-term effects of water transfer on the fish fauna of Sister Grove Creek can only be determined after the conveyance system goes into normal operation, with periods of artificial flow of longer duration.  相似文献   

4.
The purpose of this paper is to develop a database of fish tissue and sediment concentrations of selected chemicals in the southern Lake Erie drainage basin, to compare contaminant concentrations in fish tissue and sediment collected from the Grand River, Ohio, in the vicinity of a former soda ash and chromate plant with that for other waterbodies in the drainage basin, and to evaluate the potential human health risks posed by these chemicals, with special focus on chromium. The results of this study indicate that chemical concentrations in fish tissue and sediment from the Grand River are generally lower than that of other waterbodies in the southern Lake Erie drainage basin. Although arsenic and beryllium concentrations in Grand River sediment are above their respective human health-based concentrations, these concentrations are comparable with local and regional background and are not expected to pose a significant incremental risk to human health. In addition, sediment concentrations do not exceed ecological screening criteria. Although PCB and several pesticides were found to have concentrations in fish tissue from the Grand River in excess of human health based concentrations, these concentrations are among the lowest found in waterbodies in the southern Lake Erie drainage basin.  相似文献   

5.
Partitioning of phosphorus between particles and water in a river outflow   总被引:1,自引:0,他引:1  
Barlow  John P.  Glase  Madelyn S. 《Hydrobiologia》1982,91(1):253-260
The mixing zone between Cayuga Lake, N.Y. and one of its tributaries, Salmon Creek, was studied to determine effects of physical processes such as adsorption, precipitation or sedimentation on phosphorus discharged by the Creek. A high sodium concentration in the lake served as a natural tracer, by which proportions of Creek and Lake water were determined at any point in the mixing zone. Proportions of Creek and Lake water were used to predict amounts of P that would be expected on the basis of mixing alone. Differences between predicted and observed concentrations were attributed to local physical processes. This analysis showed that, in several of the six plumes surveyed, there was substantial loss of P due to sedimentation. The P-distribution in all plumes showed evidence of exchanges between particles and the medium, as a result of which soluble reactive-P usually decreased and soluble unreactive-P usually increased. The nature and magnitude of these local processes were such that they could have significant effects on the fate of stream-P discharged into the lake.Supported in part by Office and Technology, U.S. Department Interior and by Hatch Funds from U.S. Department of Agriculture.  相似文献   

6.
The concentration of major elements (Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn and P), particulate phosphorus forms (NH4Cl-RP, BD-RP, NaOH-RP, HCl-RP and NaOH(85)-RP) and carbon content were determined in six size fractions (<8, 8–12, 12–19, 19–31, 31–42 and 42–<60 µm) of sediment collected at gauging stations located in two Lake Erie tributaries (Big Creek and Big Otter Creek). Concentrations of major elements and phosphorus forms were remarkably similar in sediment size fractions from both rivers. Nonapatite inorganic P (NAIP) and organic P (OP) concentrations increased with decreasing grain size while apatite inorganic P (AIP) content decreased with decreasing grain size. Results of phosphorus fractionation studies were combined with historical (particle size) and hydrometric data to simulate the export of particle P on tributary sediment < 63 µm. AIP represents 67 and 70% of the calculated particulate P mass while NAIP accounts for 26 and 23% of sediment-bound P transported in Big Otter Creek and Big Creek, respectively. The < 8 µm size fraction of tributary sediment is the most significant for the potential release of bioavailable P into the water column.  相似文献   

7.
SUMMARY. 1. We developed equations which describe relationships between the relative abundance of diatom assemblages in the surface sediments of twenty-seven Sierra Nevada lakes and the present pH and acid neutralizing capacity in these lakes.
2. These equations were employed to reconstruct pH and acid neutralizing capacity at twenty-four depth intervals in a 20 cm long sediment core from Emerald Lake, a dilute, high elevation lake, located in Sequoia National Park, California, U.S.A.
3. The diatom-inferred pH and acid neutralizing capacity values indicated that neither pH nor acid neutralizing capacity exhibited significant trends since about A.D. 1825. We conclude from our diatom analysis that Emerald Lake has not been affected by acidic deposition.  相似文献   

8.
Watts  C. J. 《Hydrobiologia》2000,431(1):27-39
Water levels in many reservoirs typically fluctuate seasonally, but the effects of re-inundation of exposed sediments on nutrient dynamics in the water column are poorly known. This study concerns the seasonal differences in the potential of sediments from two Australian reservoirs, after having undergone different degrees of in situ desiccation, to release P under aerobic conditions. Differences were determined between biotic and abiotic P release, and results were also examined in relation to sediment chemistry. The two reservoirs, Carcoar Dam and Lake Rowlands, demonstrated different patterns of P release involving an interactive complex of P release mechanisms. Sediment chemistry at the reservoir margins was important because of the higher concentrations of N, P, Fe and Mn in Lake Rowlands. Physical and chemical processes influenced P uptake and release due to desiccation and oxidation of sediments and were of greater importance in Carcoar Dam. Abiotic P release from sterilised sediments was greater than from unsterilised sediments where both biotic and abiotic processes were apparent. Biotic P uptake and release were especially marked in Lake Rowlands where large macrophyte beds provided a rich source of organic matter. Little seasonal difference in P release was detected. The increased P release from dried sediments has ramifications for internal P loading into reservoirs and for the calculation of P budgets. For managers of reservoirs where large expanses of sediment are exposed during drying, it may be better to maintain high water levels, where possible, during the summer by modifying drawdown practices.  相似文献   

9.
W. F. DeBusk 《Hydrobiologia》1988,159(2):159-167
A field study was conducted (May 1981 to June 1982) to develop a data-base on seasonal changes of water and sediment chemistry of Lake Monroe (4 000 ha surface and ca. 2 m deep) located in central Florida, USA. This shallow eutrophic lake is a part of the St. Johns River. Quantitative samples of lake water and sediments were collected on a monthly basis from 16 stations and analyzed for various physico-chemical parameters. Relatively high levels of dissolved solids (mean electrical conductivity (EC) = 1832 µS cm1) prevailed in the lake water, and seasonal changes in EC were probably associated with hydrologic flushing from external sources, such as incoming water from upstream as well as precipitation. Average monthly levels of total N and P during the study period were 1.82 and 0.21 mg l–1, respectively. Nutrient concentrations in the water did not show any strong seasonal trends. Organic matter content of lake sediments ranged from 1 to 182 g C kg–1 of dry sediment, reflecting considerable spatial variability. All nutrient elements in the sediments showed highly significant (P < 0.01) correlations with sediment organic C, though little or no significant relationship appeared at any sampling period between water and sediment chemistry of the lake. Temporal trends in water and sediment chemical parameters may have been concealed by periodic hydrologic flushing of the St. Johns River into Lake Monroe.Florida Agricultural Experiment Stations Journal Series No. 7836.  相似文献   

10.
A study of the limnological characteristics was conducted from January through November, 1970 of Lake Champlain, Vermont and New York, U.S.A. The seasonal and spatial distribution of soluble nitrate, total phosphate and reactive silicate concentrations from 20 stations are presented here. Results for soluble nitrate concentrations indicate that concentrations in the northeast area of the lake are significantly lower throughout the year than the open lake and bay stations in the western main portion of the lake. Three of the shallow bay stations generally had higher concentrations of nitrate than all other stations. Concentrations of reactive silicon dioxide do not show the same general trends as the nitrata data. Silicate concentrations in the western open portions are higher in the winter and lower in the summer than other areas. The northeast arm does not show the dramatic difference in silicates as for nitrate concentrations. The shallow bays had significantly higher silicate concentrations also, especially during peak spring runoff. No detectable soluble phosphate was measured in the surface waters of the lake. Total particulate phosphate concentrations remained relatively constant from station to station, and throughout the season. The results of the measurements of soluble nitrate and silicate generally support the hypothesis that Lake Champlain is composed of a number of distinct water masses. The general pattern of total phosphate concentrations however, does not support this hypothesis. A comparison of the three major nutrients in Lake Champlain with the St. Lawrence Great Lake indicates that the trophic status of Lake Champlain is generally higher than Lake Superior and very similar to the open waters of Lake Michigan and Lake Huron.  相似文献   

11.
Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources of E. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coli concentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. coli counts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.  相似文献   

12.
Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources of E. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coli concentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. coli counts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.  相似文献   

13.
The concentrations of 15 heavy metals in aquatic plants on Charity Island was compared to those in plants on the shoreline of Saginaw Bay, Lake Huron, U.S.A. Heavy metal concentrations were measured by neutron activation analysis. Charity Island was found to have significantly higher levels of nine of fifteen metals investigated. This indicates that distance from known pollution source was not the only factor affecting the heavy metal accumulation of the aquatic plants.  相似文献   

14.
The Upper Truckee River and Trout Creek, two major tributaries inflowing to Lake Tahoe, join to form what was historically the largest wetland in the Sierra Nevada mountain range that separates California and Nevada (USA). In the 1950s the delta floodplain of the Upper Truckee River was greatly reduced in area (38%) by urban development and the diversion of the river into a single excavated channel. Conversely, Trout Creek still flows through a wide marsh system with significant overbank flooding before entering Lake Tahoe. This study hypothesized that river channel reaches that are not incised within the delta floodplain retain more sediment and nutrients as a result of greater floodplain connectivity, compared to more incised and excavated reaches. Suspended sediment (SS) and total phosphorus (TP) load data from the delta formed by the Upper Truckee River and Trout Creek were collected using flow stage sensors, turbidometers and depth-integrated samples. During the spring snowmelt flow events monitored in 2003, SS load was reduced by 13–41% for the Upper Truckee River and by 68–90% for Trout Creek. Similar reductions in TP load were observed: 13–32% for the Upper Truckee River and 61–84% for Trout Creek. Monitoring of Trout Creek indicated a reduction in load per unit volume of 20–34% in a moderately incised reach versus a reduction of 51–77% in a non-incised marsh reach containing lagoons, braided channels and backwater areas created by a beaver dam. Smaller particle sizes, <10 μm, were retained in the lower marsh reach with similar efficiencies as larger particle sizes. If retention rates from the Trout Creek portion of the marsh are applied to the Upper Truckee River, sediment loading to Lake Tahoe for 2003 would have been reduced by 917 tons of SS.  相似文献   

15.
Levels of cadmium and zinc in various components of Williamson Ditch (an industrially contaminated stream flowing into Palestine Lake), Trimble Creek (a stream draining Palestine Lake) and the Tippecance River (a river receiving Trimble Creek) were determined. Water, sediment, plant, fish and clam samples were analyzed for cadmium and zinc content by atomic absorption spectrophotometry. Unweighted mean metal concentrations in Trimble Creek were the following: water, 51 µg Zn/1 and 4.2 µg Cd/1; sediment, 592 µg Zn/g and 48.8,µg Cd/g; plants, 375 µm Zn/g and 7.91 µg Cd/g; fish, 145 µg Zn/g and 6.02 µg Cd/g. These concentrations were generally lower than those found in Williamson Ditch and higher than those found in the Tippecanoe River or background levels previously reported for other aquatic ecosystems.  相似文献   

16.
The U.S. Department of Energy's Savannah River Site (SRS) is a former nuclear weapon production facility. From 1954–1985, releases of Al, Cu, Cr, Hg, Ni, Pb, U, and Zn were discharged into the Tims Branch-Steed Pond water system. This study investigates whether metal concentrations in Tims Branch's sediment, biofilm, and other biota exceed screening level risk calculations to determine if remedial actions should be pursued for the Contaminants of Potential Concern (U, Ni, Hg). Transfer factors (TFs) were calculated to determine metal concentration changes throughout lower trophic levels and results were compared with sediment benchmarks to create hazard quotients (HQs) to assess risk and a scientific-management decision point. Most TFs for Ni and U from lower to higher trophic level biota were <1, suggesting no biomagnifications; however HQs > 1 and cumulative distributions showed the majority of the samples exceeded action levels. Elevated TFs and HQs > 1 in the upper trophic levels for Hg indicated a high degree of bioavailability and biomagnification. Monte Carlo resampling analyses supported these empirical results. This system should continue to be closely monitored to ensure that contamination does not move off the SRS.  相似文献   

17.
A survey was undertaken in 1985 to assess spatial and temporal trends in the benthic community structure in relation to sediment contamination and wastewater sources at 70 stations between Whitefish Bay and lower Lake George in the St. Marys River. Cluster analysis identified seven benthic communities. Three were identified as pollution impacted, based on a preponderance of tubificids and nematodes, usually at high densities (up to 259 000 m-2), but sometimes at low densities (< 100 m-2) at individual stations. Impacted communities occurred downstream of industrial and municipal sources and in depositional areas, and were confined mainly to Canadian waters. Unimpacted communities had greater numbers of taxa, and occurred upstream of point sources, along the U.S. shoreline, and in most areas of downstream lakes. Impacted and unimpacted communities were separated along particle size and contaminant gradients in river sediments. Despite recent reductions in pollutant loadings and improvements in sediment quality, no major changes were apparent in the status of the benthic community from earlier surveys.  相似文献   

18.
1. Reservoir creation and management can enhance many ecological services provided by freshwater ecosystems, but may alter the natural conditions to which aquatic biota have adapted. Benthic macroinvertebrates often reflect environmental conditions, and this community may be particularly susceptible to water‐level changes that alter sediment exposure, temperature regime, wave‐induced sediment redistribution and basal productivity. 2. Using a before–after control–impact experimental design, we assessed changes in macroinvertebrate community structure corresponding with changes in water‐level management in two lentic systems in the Voyageurs National Park, Minnesota, U.S.A. Littoral zone (depths 1–5 m) benthic macroinvertebrate assemblages were sampled in Rainy Lake (control system) and Namakan Reservoir (impact system) in 1984–85, and again in 2004–05 following a change in water‐level management that began in January 2000. The new regime reduced the magnitude of winter drawdown in Namakan Reservoir from 2.5 to 1.5 m, and allowed the reservoir to fill to capacity in late May, a month earlier than under the prior regime. Rainy Lake water levels were not altered substantially. 3. We found changes in macroinvertebrate community structure in Namakan Reservoir relative to Rainy Lake at 1–2 m depths but not at 3–5 m depths. These shallower depths would have been most directly affected by changes in sediment exposure and ice formation. 4. In 2004–05, Namakan Reservoir benthos showed lower overall abundance, more large‐bodied taxa and an increase in non‐insect invertebrates relative to 1984–85, without corresponding changes in Rainy Lake. 5. Changes in the benthic community in Namakan may reflect cooler water in spring and early summer as well as lower resource availability (both autochthonous production and allochthonous inputs) under the new regime.  相似文献   

19.
Wetted stream-bed mapping at randomly selected sites in an agricultural stream (Del Puerto Creek), urban stream (Arcade Creek), and residential stream (Pleasant Grove Creek) in California was conducted to determine the spatial extent of depositional and non-depositional areas. This study evaluated the “representativeness” of standard sediment sampling approaches used in California by using hydrophobic pyrethroids as an example. Measured background concentrations of eight pyrethroids in sediment and potential sediment toxicity for each stream were discussed within the context of depositional areas. Four percent, 15%, and 12% of the randomly selected transects in Del Puerto Creek, Arcade Creek, and Pleasant Grove Creek, respectively, were depositional areas. For all three streams, depositional areas were more dominant in downstream segments. Pyrethroid concentrations in sediment were higher in depositional areas versus non-depositional areas in Del Puerto Creek and were also higher downstream. Pyrethroid concentrations in sediment were also higher in downstream areas of Arcade Creek but generally higher in upstream areas of Pleasant Grove Creek. The results from this study demonstrate the importance of determining “representativeness” of depositional areas for an entire stream if hydrophobic chemicals (pyrethroids) measured in sediment from depositional areas are suspected to be toxic.  相似文献   

20.
Variables Affecting Two Electron Transport System Assays   总被引:1,自引:0,他引:1       下载免费PDF全文
Several methodological variables were critical in two commonly used electron transport activity assays. The dehydrogenase assay based on triphenyl formazan production exhibited a nonlinear relationship between formazan production (dehydrogenase activity) and sediment dilution, and linear formazan production occurred for 1 h in sediment slurries. Activity decreased with increased time of sediment storage at 4°C. Extraction efficiencies of formazan from sediment varied with alcohol type; methanol was unsatisfactory. Phosphate buffer (0.06 M) produced higher activity than did either U.S. Environmental Protection Agency reconstituted hard water or Tris buffer sediment diluents. Intracellular formazan crystals were dissolved within minutes when in contact with immersion oil. Greater crystal production (respiration) detected by a tetrazolium salt assay occurred at increased substrate concentrations. Test diluents containing macrophyte exudates produced greater activity than did phosphate buffer, U.S. Environmental Protection Agency water, or ultrapure water diluents. Both assays showed decreases in sediment or bacterial activity through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号