首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

2.
Formation of the cuticle from components of the secretory cavity and subcuticular wall was studied by transmission electron microscopy of glandular trichomes of Cannabis prepared by high pressure cryofixation-cryosubstitution. Secretory vesicles in the secretory cavity resembled those localized in the subcuticular wall as well as the vesicle-related material associated with the irregular inner surface of the cuticle and appeared to provide precursors for thickening of the cuticle. Some contiguous vesicles in the secretory cavity and subcuticular wall lacked a surface feature at their point of contact, supporting an interpretation of vesicle fusion. Fibrillar matrix from the secretory cavity contributed fibrillar matrix to the subcuticular wall, and persisted as residual fibrillar matrix associated with secretory materials coalesced to the thickened inner surface of the cuticle. Elongated fibrils arranged in uniformly spaced parallel pairs contributed to the organization of fibrillar matrix in the subcuticular wall. Striae were evident in the outer portion of the cuticle, and appeared to represent sites of degraded residual fibrillar matrix associated with secretory materials coalesced to the inner cuticular surface. This study supports an interpretation that contents of secretory vesicles from the secretory cavity contribute to formation of glandular cuticle.  相似文献   

3.
Infection of nematodes byDactylaria haptotyla, a nematode-trapping hyphomycete, was studied by electron microscopy. The cytoplasm of the adhesive knob in the fungus contained a number of electron-dense, membrane-bound vesicles, 0.2–0.5 µm in diam. The vesicles were rarely seen in the stalk cell or vegetative cell cytoplasm. When the adhesive knob came into contact with the nematode's cuticle, it secreted an adhesive which was seen in ultrathin sections between the knob and the cuticle as an amorphous mass. At the same time, electron-dense vesicles in the cytoplasm were reduced in number and many small vacuoles developed. Soon after capture of a nematode, the cell wall of the adhesive knob became obscure at the prospective site of penetration, where a vesicle, 0.7 µm in diam, was found in serial thin sections of the knob's cytoplasm. At the site facing the vesicle, the peripheral part of the nematode's cell exhibited a high electron density. The vesicle, which appeared to be derived from smaller electron-dense vesicles coalesced with each other, released its enzymic contents toward the captured nematodes before penetration by the fungus.  相似文献   

4.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

5.
The stigma of Cicer arietinum L. cv. UC-5, a self-compatible legume, is comprised of a small central region of papillate cells which exhibit a localized surface secretion at the white bud stage of development, and of surrounding peripheral cells which lack surface secretion at the white bud stage and at anthesis. The cuticle of cells of the central region is thin and smooth and is displaced from subtending cells and fragmented as a result of secretory production. The cuticle of peripheral cells is thick and rugose. Although it is also displaced by secreted material, it is not disrupted during the white bud stage of development or at anthesis. The contents of central and peripheral papillate cells are similar. Cells are densely cytoplasmic, often with starch-containing plastids. Mitochondria, Golgi bodies, and associated vesicles are abundant, along with strands of smooth and rough endoplasmic reticulum. The limited stigma surface area covered by the secretion may restrict pollen capture and retention. This limited area may partly account for the notably unsuccessful hybridization attempts to broaden the genetic base and to develop improved cultivars of Cicer.  相似文献   

6.
Abstract The ‘slit organs’ of Anoplodactylus petiolatus are found all over the body cuticle. They are composed of a cuticular pore apparatus, an inner and an outer canal cell, and of four large and one to three small compartment cells. Plasma of the latter seven cells is almost completely filled with large membrane-enclosed compartments that contain either numerous small vesicles (one of the large cells) or homogeneous material of varying electron density (three large and all the small cells). Microvilli are found in the apical region of the compartment cells. The nucleus is situated basally where Golgi-cisternae, coated vesicles and free ribosomes are frequently found. Apical microvilli and vesicles are also formed by the inner canal cell indicating that it might directly be involved in transport. Anatomically the ‘slit organs’ are similar to class III glands described for many arthropods. In addition, discharge of secretion via large intracellular compartments is also a feature found in arthropod glands. Although pycnogonids appear to take up substances across the cuticle, a genuine secretion rather than a more generalized transport function is suggested for the ‘slit organs’.  相似文献   

7.
Summary The structure of the two integumental layers comprising the carapace of female D. magna was examined at several points through the molt cycle. The epicuticle and procuticle are simple in organisation; pore canals are absent but intracuticular fibres are present, forming complexes with invaginations of the epidermal plasma membrane similar to such complexes described in the literature for other arthropods. The epidermis consists almost entirely of cuticle-secreting cells. Secretion of the new cuticle begins when 50–67% of the instar has elapsed by which time the epidermal cells have increased in height and their nuclei have become more rounded. However, other presumed secretory phenomena observed viz. the formation of dense core vesicles by Golgi bodies, and the occurrence of these and coated vesicles near the apical plasma membrane are not restricted to any particular period during the molt cycle. This suggests that the mechanisms of cuticle secretion do not undergo marked changes in activity as they do in decapods; presumably this relative continuity is related to the much shorter molt cycle of cladocerans.The technical assistance of G.A. Bance, and the financial support provided by the National Research Council of Canada are gratefully acknowledged  相似文献   

8.
The present study describes the anatomical structure of calyx and leaf glands in Galphimia brasiliensis and analyzes the mechanism of secretion. The glands are marginal and suprabasal, cup-shaped, sessile, and scarcely visible with the naked eye. Light microscopy reveals the following features: a thin, smooth cuticle; unistratified secretory cells; subglandular parenchyma; and vascular bundle supply composed of phloem and xylem with abundant druses of calcium oxalate. Transmission electron microscopy reveals the presence of secretory cells with conspicuous nuclei, dense cytoplasm, lipid droplets, numerous vesicles, mitochondria, Golgi, rough endoplasmic reticulum (RER), and elongated plastids with osmiophilic contents. The secretion reaches the apoplastic space and accumulates beneath the cuticle. Finally, the viscous, translucent exudate is eliminated by mechanical rupture of the cuticle. Histochemical analysis confirms that lipids are the main constituent. Small amounts of polysaccharides were also identified.  相似文献   

9.
《农业工程》2023,43(1):89-98
The changed phenolic acids (PAs) allelochemicals exuded by the roots induced by interspecific interactions is related to intercropping alleviates soil-borne disease. However, the presence of PAs in roots and root exudations and their rhizodeposition under intercropping are still unclear. Hydroponic and soil experiments of wheat, faba bean, and wheat intercropped with faba bean were conducted, and the major compositions and contents of PAs in roots, root exudations, and rhizospheric soil were determined. The results showed that ρ-hydroxybenzoic, vanillic, and syringic acids were the major components of PAs in roots, root exudations, and rhizospheric soil in a wheat and faba bean intercropping system. The compositions and percentages of PAs in roots of faba bean were altered when faba bean intercropped with wheat. The total exudation rate of PAs in root exudations was decreased by 30%–60% under the wheat and faba bean intercropping (W//F) system as compared to mono-cropped faba bean (MF). ρ-hydroxybenzoic acid was identified in the root exudation of both MF and mono-cropped wheat (MW), but not detected in the intercropping on 60 days after transplanting. Vanillic acid was only detected in the root exudation of MF on 30 days after transplanting. The rhizodepostion of vanillic and cumaric acid were decreased at both branching and pod setting stages in W//F as compared to MF. In conclusion, interspecific interaction changed the compositions and contents of PAs in faba bean roots and root exudations. W//F constrained vanillic acid exuded by roots and decreased vanillic and coumaric acid rhizodeposition by faba bean, which provides insight into root-soil interactions in the intercropping systems.  相似文献   

10.
The skin surface of bony fishes   总被引:2,自引:0,他引:2  
Mary  Whitear 《Journal of Zoology》1970,160(4):437-454
The cuticle described by light microscopists on the skin of various fishes, has been studied by electron microscopy in several species of teleost and in two other actinopterygian fish. Thelcuticle consists of an external coating layer, probably of mucopolysaccharide, which is secreted from the surface epidermal cells, not from the goblet mucous cells. The thickness of the cuticle is commonly of the order of 1 μm. It is particularly well developed in Trigla , where its thickness may vary from a fraction of a micron up to 50 μm, on different parts of the same individual. The cuticle has been detected in species from diverse orders, and is probably a normal constituent of the skin of all bony fishes. It is frequently lost during histological preparation. The external coat continues over the apertures of taste-buds, and may be continuous with the secretion at the mouths of chloride secreting cells. The secretion of the cuticle is partly from, or through, the outer membrane of the epidermal cells, but there is some evidence that cytoplasmic inclusions in the surface epidermal cells are also involved. There is striking variation in the appearance of these inclusions in electron micrographs of different species, and in some cases in different parts of the same fish, notably in Blennius. Certain of the inclusions are membrane-bounded vesicles whose contents are more electron-dense after staining with phosphotungstic acid than with lead citrate. In other cases, the inclusions are electron-transparent vacuoles. The cuticle is briefly compared with similar structures in other aquatic animals.  相似文献   

11.
Chronological histological alterations of Metarhizium anisopliae during interaction with the cattle tick Boophilus microplus were investigated by light and scanning electron microscopy. M. anisopliae invades B. microplus by a process which involves adhesion of conidia to the cuticle, conidia germination, formation of appressoria and penetration through the cuticle. Twenty-four hours post-infection conidia are adhered and germination starts on the surface of the tick. At this time, the conidia differentiate to form appressoria exerting mechanical pressure and trigger hydrolytic enzyme secretion leading to penetration. Massive penetration is observed 72 h post-inoculation, and after 96 h, the hyphae start to emerge from the cuticle surface to form conidia. The intense invasion of adjacent tissues by hyphae was observed by light microscopy, confirming the ability of M. anisopliae to produce significant morphological alterations in the cuticle, and its infective effectiveness in B. microplus.  相似文献   

12.
Summary The stigmas of species inAneilema andCommelina are trifid and comprise elongate papillae. Progressive degeneration of papular cells is observed in stigmas from open flowers and at anthesis papillae may be moribund and collapsed. Fluid emanating from the hollow style flows onto the surface through ruptures in the cuticle at the interpapillar junctions into the interstices at maturity. This secretion stains positively for protein. Stigmas are of the wet type.The cuticle overlying the papillar cells is ridged and at the final stages prior to flowering this cuticle becomes detached from the underlying cellulosic wall. The sub-cuticular space so formed is filled with secretion. InAneilema species detachment of cuticle is at the papillar tip and along the lateral walls. InCommelina species the anticlinal walls of adjacent papillae are strongly attached for much of their length and thus detachment of cuticle is restricted to the papillar tip. The cell wall at the tip in both genera may proliferate forming a rudimentary transfer-cell type wall. The secretion is considered to be produced by the papillar cells. It is PAS positive but fails to stain for protein and in both the light and electron microscopes appears heterogenous.Pollen attachment, hydration, germination and early tube growth are very rapid following self-pollination, the pollen tubes entering the neck of the style within ten minutes of attachment.A unique character combination involving pollen and stigmas in these genera indicates a monophyletic origin.  相似文献   

13.
Gametangial interaction and oospore formation were studied in Ciliomyces spectabilis, a Lagenidiaceous fungus which is parasitic on ciliate cysts. Electron dense and granular vesicles of the antheridium are engaged in formation of the copulation porus between adjacent thalli. The oosphere is delimited by Golgi-derived cisternae which give rise to the membranes of the oosphere and the periplasm. The contents of the antheridium and the periplasm degenerate. The outer oospore wall is formed by wall vesicles originating from the endoplasmic reticulum. No vesicles are involved in the development of the thick inner oospore wall. Vacuoles with electron dense spherical contents fuse and form the central reserve globule. Lipid bodies aggregate first and disintegrate later into numerous small ones. The number of cytoplasmic organelles decreases. The possibility of wall formation via secretion of soluble wall material is discussed.  相似文献   

14.
The ontogeny of large, globular, epidermal cytoplasmic inclusions (ECI) in P. virgatum roots was studied at the ultrastructural level. These ECI were seen to originate in meristematic cells as small electron translucent vesicles. Subsequently, the ECI, which appeared to be temporary storage sites, were seen to enlarge and increase in density by accumulating masses of a granular matrix as well as some small vesicular inclusions. In the zone of elongation, as the epidermal cells matured, the ECI within each cell gradually fused and the contents were lost. The pattern of the ontogeny of the ECI in the growing epidermal cells was consistent with the presence of cells of different physiologies in the zone of cell elongation of these roots.  相似文献   

15.
I. Kottke 《Protoplasma》1997,196(1-2):55-64
Summary Primary events during the establishment of the fungus-root symbiosis in ectomycorrhizas are still little understood. No attention has been paid so far to the adhesion of hyphae to the root cuticle and penetration of this barrier, although the importance of the cuticle has been shown for pathogen-plant interactions. Early developmental stages of in vitro mycorrhization ofLaccaria amethystea onPicea abies after short periods of incubation in growth chambers under elevated CO2 concentrations were studied by light and transmission electron microscopy. No structural changes in mycorrhization related to elevated CO2 were found, but fine roots and mycorrhizas developed faster. Adhesion pad formation was observed at hyphal tips in contact with the root cuticle. The adhesion pad was connected to the outer cell wall layer of the hypha and reacted positively to the Swift reaction for cysteine rich proteins. Although the reaction cannot be considered as totally specific, findings are discussed in respect to hydrophobins, which have recently been found to be expressed during early steps in ectomycorrhizal development. The root cuticle was dissolved and penetrated by fungal tips of the fingerlike branching mycelium attached to the root surface. The findings are compared with well documented pathogenic fungus-plant interactions at the cuticle. The possibility of restriction of hyphal attack to that part of the cuticle covering cell junctions is discussed.  相似文献   

16.
Vesicular arbuscular mycorrhizal (VAM) infection was found in KOH-cleared and lactophenolblue-stained roots of Salix babylonica, Melaleuca quinquenervia and Casuarina cunninghamiana. These are all trees growing on creeks and river banks, in stationary or slowly flowing fresh or brackish waters in swamps, creeks, drains and channels, and in seepage areas of New South Wales, Australia. Larger and older roots lacked VAM infection in the inner cortex, probably due to suberisation of cells, and the endophyte was restricted to the epidermal layers. Spores and sporocarps of the VAM fungi Glomus fasciculatus, G. mosseae, Sclerocystis rubiformis, Gigaspora margarita and an unidentified Scutellospora sp. were wet sieved and decanted from aquatic sediments and soils. The presence of similar VAM fungal spores in the aquatic sediments and terrestrial soil suggests that they probably enter the aquatic sediments through run off from the land ecosystem. All three plants formed vesicular arbuscular (VA) mycorrhizae almost exclusively in the marshy, periodically inundated soils, but the same plant species formed endo-/ ectomycorrhizae when growing in soil with higher redox potentials (E h). Salix and Melaleuca tree roots possessed both VAmycorrhizae and ectomycorrhizae. VAM roots of Casuarina were equipped with both N-fixing Frankia nodules and proteoid roots. VAM endophytes did not invade nodular cortical tissues, suggesting the presence of an exclusion mechanism which needs further study. The highest VAM infection was found in nodulated specimens. Free-floating roots growing in water close to the banks were non-mycorrhizal but were mycorrhizal in the bottom-rooting state. VAM spore number and mycorrhizal infection seem to be associated with redox-potential, i.e. lower at sites such as swamps, water or sediments with lower E h values than in terrestrial soils with higher E h values. A relationship between soil moisture gradient and VAM infection pattern became apparent from the study of a C. cunninghamiana transect on a creek embankment, i.e. typical vesicles and arbuscules were found in roots from drier soils, there was a lack of arbuscules in relatively wet soils but large lipid-filled intracellular vesicles were present, and typical vesicles and arbuscules were absent in flooded creek beds where roots were associated with coenocytic intercellular hyphae with abundant lipid droplets. The importance of VA mycorrhiza, ectomycorrhizae, N-fixing root nodules and proteoid roots at the land-water interface is discussed with reference to the use of these trees as pioneering species for stabilising river and stream banks, reducing erosion, windbreaking, and as a long-term and inexpensive means of achieving biological control of aquatic weeds by shading waterways.  相似文献   

17.
Haixin Xu  Kurt Mendgen 《Planta》1994,195(2):282-290
Te penetration hypha of basidiospore-derived infection structures of the cowpea rust fungus (Uromyces vignae Barclay) in epidermal cells of the nonhost, broad bean (Vicia faba L.), was studied with the electron microscope after high-pressure freezing and freeze substitution. After fungal invasion of the epidermis, a plug in the penetration hypha separated the infection structures on the cuticle from the intraepidermal vesicle of the fungus. The plug and the fungal cell wall reacted with a polyclonal 1,3-β-glucan antibody. The plug in the haploid stage seems to have a task similar to the septum formed in the diploid stage of the fungus. Around the penetration hypha, the plant wall stained darkly and a papilla was deposited by the plant. In the papilla, 1,3-β-glucans were labelled by a monoclonal and a polyclonal antibody. In the infected epidermal cell, clathrin-coated pits, coated vesicles, partially coated reticula and multivesicular bodies were found. The contents of the coated pits, coated vesicles, partially coated reticula and multivesicular bodies bound to monoclonal and polyclonal 1,3-β-glucan antibodies. Accumulation and uptake of this paramural material into the plant cell by endocytosis is concentrated at the fungal penetration site. It may influence the host-parasite interaction.  相似文献   

18.
Beetles with flying ability lock their elytra (forewings) to the thorax or/and abdomen using complex locking devices. These structures are often supplemented with microtrichia fields of the inner surface of the elytra and adjacent parts of the pterothorax. The present study provides information about the ultrastructure of microtrichia of the dorso‐medial fields of the thorax (TDM) in tenebrionid beetles (Tribolium castaneum, Zophobas rugipes). Epidermal cells located under the TDM field contain large electron‐lucent vesicles connected to rough endoplasmic reticulum. Microtrichia and underlying cuticle of the TDM have a high density of pore channels, which are responsible for transport of an epidermal secretion onto the TDM surface. In order to show the presence of the secretion on the cuticle surface, TDM fields of air‐dried specimens were compared with those in specimens after two treatments, such as (1) dehydration in ethanol and acetone, and (2) dental‐wax‐cast technique applied to living beetles. This revealed the presence of the nonvolatile film on the intact microtrichial surface. Possible functions of this film are suggested to be (1) the increase of adhesive forces in the contact area and (2) providing soft coupling and release of two corresponding parts of the elytra‐locking device. J. Morphol. 240:101–113, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
Summary Histochemical reactions indicating keratinization have previously been demonstrated in parts of the epidermis of Bagarius bagarius. Fluorescence histochemistry and electron microscopy have now confirmed these results. Elevated areas of the epidermis are capped by a layer of dead cells with altered contents. On the outer aspect of these cells a dense layer, 18 nm thick, beneath the plasma membrane corresponds to the resistant envelope found in keratinized cells in tetrapod vertebrates. In Bagarius this layer does not extend to all faces of the keratinized cells, but a similar envelope has been detected in two other sites of piscine keratinized epidermis investigated, namely in the breeding tubercles of Phoxinus phoxinus and in the teeth of Lampetra fluviatilis. In the elevated areas of Bagarius-epidermis, the epithelial cells undergo progressive changes in cytoplasmic organization as they become more superficial. The second tier from the surface is sealed by tight junctions and is separated from the overlying keratinized cells by a sub-corneal space resembling that found in keratinized amphibian epidermis. Histochemical evidence of a high lipid content in the outer layers of the epidermis correlates with the presence of lipid inclusions and lamellated membranous profiles in the material studied by electron microscopy. Histochemical results show that the fin skin of Blennius pholis is not keratinized, but secretes a cuticle, histochemically reactive for both proteins and glycoproteins.  相似文献   

20.
  • In Metrodorea nigra, a Rutaceae species with rhythmic growth, the shoot apex in the dormant stage is enclosed by modified stipules. The young organs are fully covered with peltate secretory trichomes, and these structures remain immersed in a hyaline exudate within a hood-shaped structure. Our study focused on the morpho-functional characterization of the peltate trichomes and cytological events associated with secretion.
  • Shoot apices were collected during both dormant and active stages and processed for anatomical, cytochemical and ultrastructural studies.
  • Trichomes initiate secretion early on, remain active throughout leaf development, but collapse as the leaves expand; at which time secretory cavities start differentiation in the mesophyll and secretion increases as the leaf reaches full expansion. The subcellular apparatus of the trichome head cells is consistent with hydrophilic and lipophilic secretion. Secretion involves two vesicle types: the smaller vesicles are PATAg-positive (periodic acid/thiocarbohydrazide/silver proteinate) for carbohydrates and the larger ones are PATAg-negative. In the first phase of secretory activity, the vesicles containing polysaccharides discharge their contents through exocytosis with the secretion accumulating beneath the cuticle, which detaches from the cell wall. Later, a massive discharge of lipophilic substances (lipids and terpenes/phenols) results in their accumulation between the wall and cuticle. Release of the secretions occurs throughout the cuticular microchannels.
  • Continued protection of the leaves throughout shoot development is ensured by replacement of the collapsed secretory trichomes by oil-secreting cavities. Our findings provide new perspectives for understanding secretion regulation in shoot apices of woody species with rhythmic growth.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号