首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast transglutaminase (chlTGase) activity is considered to play a significant role in response to a light stimulus and photo‐adaptation of plants, but its precise function in the chloroplast is unclear. The characterisation, at the proteomic level, of the chlTGase interaction with thylakoid proteins and demonstration of its association with photosystem II (PSII) protein complexes was accomplished with experiments using maize thylakoid protein extracts. By means of a specific antibody designed against the C‐terminal sequence of the maize TGase gene product, different chlTGase forms were immunodetected in thylakoid membrane extracts from three different stages of maize chloroplast differentiation. These bands co‐localised with those of lhcb 1, 2 and 3 antenna proteins. The most significant, a 58 kDa form present in mature chloroplasts, was characterised using biochemical and proteomic approaches. Sequential fractionation of thylakoid proteins from light‐induced mature chloroplasts showed that the 58 kDa form was associated with the thylakoid membrane, behaving as a soluble or peripheral membrane protein. Two‐dimensional gel electrophoresis discriminated, for the first time, the 58‐kDa band in two different forms, probably corresponding to the two different TGase cDNAs previously cloned. Electrophoretic separation of thylakoid proteins in native gels, followed by LC‐MS mass spectrometry identification of protein complexes indicated that maize chlTGase forms part of a specific PSII protein complex, which includes LHCII, ATPase and pSbS proteins. The results are discussed in relation to the interaction between these proteins and the suggested role of the enzyme in thylakoid membrane organisation and photoprotection.  相似文献   

2.
The vascular bundle sheath cells of sugar cane contain starch-storing chloroplasts lacking grana, whereas the adjacent mesophyll cells contain chloroplasts which store very little starch and possess abundant grana. This study was undertaken to determine the ontogeny of these dimorphic chloroplasts. Proplastids in the two cell types in the meristematic region of light-grown leaves cannot be distinguished morphologically. Bundle sheath cell chloroplasts in tissue with 50% of its future chlorophyll possess grana consisting of 2-8 thylakoids/granum. Mesophyll cell chloroplasts of the same age have better developed grana and large, well structured prolamellar bodies. A few grana are still present in bundle sheath cell chloroplasts when the leaf tissue has 75% of its eventual chlorophyll, and prolamellar bodies are also found in mesophyll cell chloroplasts at this stage. The two cell layers in mature dark-grown leaves contain morphologically distinct etio-plasts. The response of these two plastids to light treatment also differs. Plastids in tissue treated with light for short periods exhibit protrusions resembling mitochondria. Plastids in bundle sheath cells of dark-grown leaves do not go through a grana-forming stage. It is concluded that the structure of the specialized chloroplasts in bundle sheath cells of sugar cane is a result of reduction, and that the development of chloroplast dimorphism is related in some way to leaf cell differentiation.  相似文献   

3.
Transglutaminases (TGases, EC 2.3.2.13) are intra- and extra-cellular enzymes that catalyze post-translational modification of proteins by establishing ?-(γ-glutamyl) links and covalent conjugation of polyamines. In chloroplast it is well established that TGases specifically polyaminylate the light-harvesting antenna of Photosystem (PS) II (LHCII, CP29, CP26, CP24) and therefore a role in photosynthesis has been hypothesised (Della Mea et al. [23] and refs therein). However, the role of TGases in chloroplast is not yet fully understood. Here we report the effect of the over-expression of maize (Zea mays) chloroplast TGase in tobacco (Nicotiana tabacum var. Petit Havana) chloroplasts. The transglutaminase activity in over-expressers was increased 4 times in comparison to the wild-type tobacco plants, which in turn increased the thylakoid associated polyamines about 90%. Functional comparison between Wt tobacco and tgz over-expressers is shown in terms of fast fluorescence induction kinetics, non-photochemical quenching of the singlet excited state of chlorophyll a and antenna heterogeneity of PSII. Both in vivo probing and electron microscopy studies verified thylakoid remodeling. PSII antenna heterogeneity in vivo changes in the over-expressers to a great extent, with an increase of the centers located in grana-appressed regions (PSIIα) at the expense of centers located mainly in stroma thylakoids (PSIIβ). A major increase in the granum size (i.e. increase of the number of stacked layers) with a concomitant decrease of stroma thylakoids is reported for the TGase over-expressers.  相似文献   

4.
Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine γ-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22–30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.  相似文献   

5.
The accumulation of steviol glycosides (SGs) in cells of Stevia rebaudiana Bertoni both in vivo and in vitro was related to the extent of the development of the membrane system of chloroplasts and the content of photosynthetic pigments. Chloroplasts of the in vitro plants, unlike those of the intact plants, had poorly developed membrane system. The callus cells grown in the light contained proplastids of almost round shape and their thylakoid system was represented by short thylakoids sometimes forming a little number of grana consisting of 2–3 thylakoids. In cells of the etiolated in vitro regenerants and the callus culture grown in the dark, only proplastids practically lacking the membrane system were observed. All the chloroplasts having developed thylakoids and forming at least a little number of grana were equipped with photochemically active reaction centers of photosystems 1 and 2. Leaves of in vivo plants accumulated greater amount of the pigments than leaves of the in vitro plants. In both the callus culture grown in the light and the etiolated in vitro regenerants, the content of the pigments was one order of magnitude lower than that in leaves of the intact plants. The callus tissue grown in the dark contained merely trace amounts of the pigments. Leaves of the intact and the in vitro plants did not exhibit any significant differences in photosynthetic O2 evolution rate. However, photosynthetic O2 evolution rate in the callus cells was much lower than that in the differentiated plant cells. The in vitro cell cultures containing merely proplastids did not practically produce SGs. However, after transferring these cultures in the light, both the formation of chloroplasts and the production of SGs in them were detected.  相似文献   

6.
N. Sato  O. Misumi  Y. Shinada  M. Sasaki  M. Yoine 《Protoplasma》1997,200(3-4):163-173
Summary Localization and protein composition of plastid nucleoids was analyzed in light-grown pea seedlings at various stages of leaf development. In young plastids of unopened leaf buds, nucleoids were abundant and localized in the periphery of plastids, whereas, in mature leaves, chloroplasts contained nucleoids within narrow spaces restricted by thylakoids or grana. The migration of nucleoids into the interior of plastids preceded the formation of grana, and hence, the maturation of the photosynthetic apparatus. The protein composition of nucleoids was considerably different in young plastids and mature chloroplasts. Polypeptides with a molecular mass of 70–100 kDa predominated in the nucleoids of young plastids, whereas polypeptides with molecular mass of 20–30 kDa were abundant in the nucleoids of mature chloroplasts. Immuno-blot analysis with antibodies against the nucleoids of young plastids identified various polypeptides that were significantly more abundant in the nucleoids of young plastids than in the nucleoids of mature chloroplasts. These results demonstrate that plastid nucleoids are subject to dynamic changes in both localization and composition during the normal development of chloroplasts in the light.Abbreviations DAPI 4,6-diamidino-2-phenylindol - DiOC6 3,3-dihexyloxacarbocyanine iodide  相似文献   

7.
8.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

9.
In the light of our previous work, we know that there is a relationship between bound polyamines and the chloroplast differentiation process. This relationship may represent an important component of the process and be part of the mechanism of kinetin action, which stimulates chloroplast differentiation. To clarify the nature of the binding of polyamines to chloroplast structures, the possible involvement of transglutaminases in kinetin-stimulated chloroplast photodevelopment was investigated. Immunodetection of transglutaminases revealed bands at 77, 50 and 30 kDa both in etioplasts and chloroplasts. The data indicated a positive correlation between enzyme level and activity. It also demonstrated the regulation of transglutaminase protein expression by kinetin. The suborganellar location of transglutaminases by electron microscopy showed that the enzyme is peculiarly localised, mainly in pro-thylakoids and appressed grana thylakoids. The data corroborated that spermidine post-translational modification of certain plastid proteins of 58, 29, 26 and 12 kDa occurred. The results we obtained suggest that transglutaminases take part in the formation of the chloroplast structure via a mechanism whereby polyamines bind to their protein substrates. These findings about the effect of kinetin on conjugation provide a new contribution to the understanding of the mechanism of kinetin action on etioplast-to chloroplast transformation.  相似文献   

10.
Soybean plants grown in controlled environment cabinets under light intensities of 220 w/m2 or 90 w/m2 (400–700 nm) and day to night temperatures of 27.5–22.5 C or 20.0–12.5 C in all combinations, exhibited differences in growth rate, leaf anatomy, chloroplast ultrastructure, and leaf starch, chlorophyll, and chloroplast lipid contents. Leaves grown under the lower light intensity at both temperatures had palisade mesophyll chloroplasts containing well-formed grana. The corresponding leaves developed under the higher light intensity had very rudimentary grana. Chloroplasts from high temperature and high light had grana consisting of two or three appressed thylakoids, while grana from the low temperature were confined to occasional thylakoid overlap. Spongy mesophyll chloroplasts were less sensitive to growth conditions. Transfer experiments showed that the ultrastructure of chloroplasts from mature leaves could be modified by changing the conditions, though the effect was less marked than when the leaf was growing.  相似文献   

11.
Summary Explants of dormant tubers ofHelianthus tuberosus were grown in vitro, with or without 10 M 2,4-D, for 3 weeks. The 2,4-D-treated explants grew by cell enlargement and division and formed a non-photosynthetic friable callus composed of thin-walled cells. However, untreated explants, whose cells did not divide, differentiated chloroplasts and contained intercellular spaces filled with opaque material; chloroplasts were derived from non-photosynthetic plastids with tubular complexes and secondary starch grains: both disappeared when the thylakoids began to organize and form small grana. Nuclei also changed their morphology and became invaginated. Treated and untreated explants showed differences in their protein electrophoretic patterns and transglutaminase activity. This enzyme activity, low in dormant tubers, increased in both explants; considerably in untreated greening explants but much less in 2,4-D-treated growing ones. SDS-PAGE analysis of labelled conjugates, formed by in vitro incubation with labelled putrescine, indicated that, in addition to some apparently common substrates with Mr more than 36 kDa, proteins of lower mass were also labelled in the untreated greening explants. These data are discussed in the light of the possible role of transglutaminase in plants.Abbreviations DAPI 4,6-diamidino-2-phenylindole - 2,4-D 2,4-dichlorophenoxyacetic acid - FM fluorescence microscopy - LM light microscopy - PA polyamines - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecylsulphate - TCA trichloroacetic acid - TEM transmission electron microscopy - TGase transglutaminase - Tris-buffer tris(hydroxymethyl)aminomethane hydrochloride and tris(hydroxymethyl)aminomethane  相似文献   

12.
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll–protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements. Dedicated to Prof. Zbigniew Kaniuga on the 25th anniversary of his initiation of studies on chilling-induced stress in plants.  相似文献   

13.
CMU inhibits oxygen evolution in greening etiolated bean leaves.In the presence of this compound chlorophyll content is reducedand fine structure development of the chloroplasts is markedlyaffected. The number of grana per chloroplast is reduced butthe grana are larger and contain more thylakoids than the granain chloroplasts of the greening control leaves. Sucrose reversesthe effect of CMU on pigment content and fine structure developmentof chloroplasts. (Received September 14, 1965; )  相似文献   

14.
Structural variation in the stroma‐grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter‐grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter‐grana region, referred to hereafter as isolated‐grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG‐type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse‐amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.  相似文献   

15.
Two types of experiment were carried out to examine whetheror not the inactivation of photosynthesis is related to lossof chloroplasts during foliar senescence of rice seedlings.Levels of both soluble and insoluble leaf proteins decreasedduring senescence, the loss of the soluble proteins being fasterthan that of the insoluble ones. There was a good positive correlationbetween the rate of oxygen evolution and the level of solubleproteins. The inactivation of photosynthesis was also linearlyrelated to the loss of a major fraction of insoluble proteins.Thus, the loss of photosynthetic ability is ascribable to thedegradation of relevant proteins and enzymes during leaf senescence.Electron microscopy revealed that senescence caused the disorientationof the grana and stroma thylakoids, a decrease in the numberof starch granules, and an increase in the size and number ofplastoglobuli. Large grana consisting 20 to 30 thylakoids appearedin aged leaves. In addition to these changes in ultrastructure,there was a significant decrease in the size of chloroplasts.Furthermore, the number of chloroplasts in mesophyll cells wasalso notably reduced during senescence. Thus, the loss of leafproteins and inactivation of photosynthesis are both relatedto the decrease in the total mass of chloroplasts during senescenceof rice seedlings. 3Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113 Japan. (Received January 4, 1989; Accepted April 19, 1989)  相似文献   

16.
甜菊组织培养物中叶绿体的超微结构与脱分代   总被引:2,自引:1,他引:1  
含有叶绿体的甜菊(Steviarebaudiana)愈伤组织细胞转移至新鲜培养基后,导致光合片层的逐渐减少或消失,最后叶绿体脱分化形成原质体样的结构。超微结构观察表明,光合片层的减少或消失与降解及叶绿体分裂特别是不均等缢缩分裂而致基质组分和类囊体膜稀释有关。这一过程并不完全同步,一些质体含有少量正常的片展而另一些质体含有退化的片层甚至片展结构完全消失。细胞的一个明显特点是细胞器大多聚集在细胞核附近,细胞质增加并向细胞中央伸出细胞质丝。同时可观察到原质体。培养7d后,许多细胞呈分生状态,细胞质富含细胞器,充满了细胞的大部分空间。此时细胞中的质体大多呈原质体状态。在细胞生长的稳定期,质体内膜组织成基质基粒片层,同时质体核糖体增加。文中讨论了高度液泡化细胞脱分化与细胞中叶绿体脱分化的关系。  相似文献   

17.
High-pressure freezing (HPF) in combination with freeze substitution (FS) was used to analyse changes in the structure of barley chloroplasts during the daily change of light and darkness. In contrast to conventional treatment of samples, HPF-FS revealed substantial differences in chloroplast shape, volume and ultrastructure in the light period and during darkness. While chloroplasts have an ellipsoidal shape in the light, they have an enlarged and round form during the dark period. Samples collected in the light show the typical differentiation of stroma and grana thylakoids as observed by conventional ultrastructural analyses. In chloroplasts of samples collected during the dark period, thylakoids were swollen and grana stacks to a large extent were disintegrated. Similar changes occurred when leaves in the light were treated with the uncoupler gramicidin. The results suggest that the light-dependent changes in thylakoid membrane organization are related to the light-dependent changes in the ionic milieu of the thylakoid lumen and the stroma.  相似文献   

18.
Membrane-bound ribosomes of chloroplasts, isolated from pea seedlings during grana formation, can be partially liberated by 0.5 M KCl and 0.001 M puromycin. In case of mature chloroplasts, after the completion of grana formation process these agents are inefficient, and liberation of ribosomes and polyribosomes may be achieved only after solubilization of thylakoid membranes by 1% Triton X-100. Electron microscopic study of the heavy membrane fraction of young chloroplasts reveals electron-transparent membranes, containing rings and discs of thylakoids with a diameter of about 2 mum. These rings are liberated together with ribosomes under the action of 0.5 M KCl; Triton X-100 liberates equally-sized annular polyribosomes. The rings detected in chloroplast membranes at early stages of development are regarded as structures, precursor grana thylakoids, and the annular polyribosomes included into them as immediate participants of thylakoid morphogenesis.  相似文献   

19.
Palisade tissue chloroplasts (P-Chlts) and spongy tissue chloroplasts(S-Chlts) were separately isolated from spinach leaves, andtheir photosynthetic properties were compared. The followingresults were obtained: (1) At saturating light, the activities of overall electrontransport and CO2 fixation in P-Chlts were respectively 1.6–2.0and 2.5–3.0 times higher than those in S-Chlts on a Chlbasis. (2) The contents of PS I and PS II reaction centers (P700 and47 kDa polypeptide, respectively) were slightly higher in P-Chltsthan in S-Chlts, while the contents of plastoquinone, Cyt f,plastocyanin, ferredoxin, ferredoxin-NADP+ reductase, couplingfactor and ribulose-bisphosphate carboxylase were 1.6–2.2times higher in P-Chlts than in S-Chlts on a Chl basis. (3) Electron microscopic examination of chloroplast ultrastructureshowed that S-Chlts have highly stacked grana accompanied byhigher proportion of appressed thylakoids relative to non-appressedthylakoids, while P-Chlts have poorly stacked grana. The volumeratio of thylakoids to stroma was higher in S-Chlts than inP-Chlts. These results indicate that mesophyll chloroplasts adapt tothe light environment within a leaf in a similar way that thesun and shade plant chloroplasts adapt to the light environmentwithin a canopy. (Received July 19, 1984; Accepted October 13, 1984)  相似文献   

20.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号