首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.  相似文献   

2.
Era is a small GTP-binding protein and essential for cell growth in Escherichia coli. It consists of two domains: N-terminal GTP-binding and C-terminal RNA-binding KH domains. It has been shown to bind to 16S rRNAs and 30S ribosomal subunits in vitro. Here, we report that a precursor of 16S rRNA accumulates in Era-depleted cells. The accumulation of the precursors is also seen in a cold-sensitive mutant, E200K, in which the mutation site is located in the C-terminal domain. The major precursor molecule accumulated seems to be 17S rRNA, containing extra sequences at both 5' and 3' ends of 16S rRNA. Moreover, the amounts of both 30S and 50S ribosomal subunits relative to the amount of 70S monosomes increase in Era-depleted and E200K mutant cells. The C-terminal KH domain has a high structural similarity to the RbfA protein, a cold shock protein that also specifically associates with 30S ribosomal subunits. RbfA is essential for cell growth at low temperature, and a precursor of 16S rRNA accumulates in an rbfA deletion strain. The 16S rRNA precursor seems to be identical in size to that accumulated in Era mutant cells. Surprisingly, the cold-sensitive cell growth of the rbfA deletion cells was partially suppressed by overproduction of the wild-type Era. The C-terminal domain alone was not able to suppress the cold-sensitive phenotype, whereas Era-dE, which has a 10-residue deletion in a putative effector region of the N-terminal domain, functioned as a more efficient suppressor than the wild-type Era. It was found that Era-dE suppressed defective 16S rRNA maturation, resuming a normal polysome profile to reduce highly accumulated free 30S and 50S subunits in the rbfA deletion cells. These results indicate that Era is involved in 16S rRNA maturation and ribosome assembly.  相似文献   

3.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

4.
Overproduction of rRNA was artificially induced in Escherichia coli cells to test whether the synthesis of ribosomal protein (r-protein) is normally repressed by feedback regulation. When rRNA was overproduced more than twofold from a hybrid plasmid carrying the rrnB operon fused to the lambda pL promoter (pL-rrnB), synthesis of individual r-proteins increased by an average of about 60%. This demonstrates that the synthesis of r-proteins is repressed under normal conditions. The increase of r-protein production, however, for unknown reasons, was not as great as the increase in rRNA synthesis and resulted in an imbalance between the amounts of rRNA and r-protein synthesis. Therefore, only a small (less than 20%) increase in the synthesis of complete 30S and 50S ribosome subunits was detected, and a considerable fraction of the excess rRNA was degraded. Lack of complete cooperativity in the assembly of ribosome subunits in vivo is discussed as a possible explanation for the absence of a large stimulation of ribosome synthesis observed under these conditions. In addition to the induction of intact rRNA overproduction from the pL-rrnB operon, the effects of unbalanced overproduction of each of the two large rRNAs, 16S rRNA and 23S rRNA, on r-protein synthesis were examined using pL-rrnB derivatives carrying a large deletion in either the 23S rRNA gene or the 16S rRNA gene. Operon-specific derepression after 23S or 16S rRNA overproduction correlated with the overproduction of rRNA containing the target site for the operon-specific repressor r-protein. These results are discussed to explain the apparent coupling of the assembly of one ribosomal subunit with that of the other which was observed in earlier studies on conditionally lethal mutants with defects in ribosome assembly.  相似文献   

5.
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.  相似文献   

6.
The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.  相似文献   

7.
8.
9.
J Dodd  J M Kolb  M Nomura 《Biochimie》1991,73(6):757-767
Earlier studies have shown that the reconstitution of Escherichia coli 50S as well as 30S ribosomal subunits from component rRNA and ribosomal protein (r-protein) molecules in vitro is not completely cooperative and binding of more than one r-protein to a single 16S rRNA (or 23S rRNA) molecule is required to initiate a successful 30S (or 50S) ribosome assembly reaction. We first confirmed this conclusion by carrying out 30S subunit reconstitution in the presence of a constant amount of 16S rRNA together with various amounts of total 30S r-proteins (TP30) and by analyzing the physical state of reconstituted particles rather than by assaying protein synthesizing activity of the particles as was done in the earlier studies. As expected, under conditions of excess rRNA, the efficiency of 30S subunit reconstitution per unit amount of TP30 decreased greatly with the decrease in the ratio of TP30 to rRNA, indicating the lack of complete cooperativity in the assembly reaction. We then asked the question whether the cooperativity of ribosome assembly is complete in vivo. We treated exponentially growing E coli cells with low concentrations of chloramphenicol which is known to inhibit protein synthesis without inhibiting rRNA synthesis, creating conditions of excess synthesis of rRNA relative to r-proteins. Several concentrations of chloramphenicol (ranging from 0.4 to 4.0 micrograms/ml) were used so that inhibition of protein synthesis ranged from 40 to 95%. Under these conditions, we examined the synthesis of RNA, ribosomal proteins and 50S ribosomal subunits as well as the synthesis of total protein. We found that the synthesis of 50S subunits was not inhibited as much as the synthesis of total protein at lower concentrations of chloramphenicol, but the degree of inhibition of 50S subunit synthesis increased sharply with increasing concentrations of chloramphenicol and was in fact greater than the degree of inhibition of total protein synthesis at chloramphenicol concentrations of 2 micrograms/ml or higher. The inhibition of 50S subunit synthesis was significantly greater than the inhibition of r-protein synthesis at all chloramphenicol concentrations examined. These data are consistent with the hypothesis that the cooperativity of ribosome assembly in vivo is also not complete as is the case for in vitro ribosome reconstitution, but are difficult, if not impossible, to explain on the basis of the complete cooperativity model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
Effect of polyamines on in vitro reconstitution of ribosomal subunits   总被引:1,自引:0,他引:1  
The effect of polyamines on in vitro reconstitution of Escherichia coli 30S and 50S ribosomal subunits has been studied. Spermidine stimulated the reconstitution of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits at least 1.6-fold. The reconstitution of 30S particles from normal 16S rRNA and total proteins of 30S subunits exhibited only slight spermidine stimulation. However, the optimal Mg2+ concentration of the reconstitution was decreased from 20 mM to 16 mM in the presence of 3 mM spermidine. In the absence of spermidine the assembly of 30S particles from normal 16S rRNA was more rapid than the assembly from 16S rRNA lacking the methyl groups on two neighboring adenines. The reconstitution of 50S particles from 23S and 5S rRNA and total proteins of 50S subunits was not influenced greatly by spermidine. Gel electrophoresis results, from reconstitution experiments of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits, showed that the assembly of S1 and S9 proteins to 23S core particles was stimulated by spermidine during reconstitution. The relationship of polyamine effects on in vitro ribosome assembly from its constituents to in vivo ribosome assembly is discussed. The reconstitution of Bacillus subtilis 30S particles from 16S rRNA and total proteins of 30S subunits was also stimulated approximately 1.3-fold by 3 mM spermidine.  相似文献   

12.
Structural analyses have shown that nucleotides at the positions 770 and 771 of Escherichia coli 16S rRNA are implicated in forming one of highly conserved intersubunit bridges of the ribosome, B2c. To examine a functional role of these residues, base substitutions were introduced at these positions and mutant ribosomes were analyzed for their protein synthesis ability using a specialized ribosome system. The results showed requirement of a pyrimidine at the position 770 for ribosome function regardless of the nucleotide identity at the position 771. Sucrose gradient profiles of ribosomes revealed that the loss of protein-synthesis ability of mutant ribosome bearing a base substitution from C to G at the position 770 stems from its inability to form 70S ribosomes. These findings indicate involvement of nucleotide at the position 770, not 771, in ribosomal subunit association and provide a useful rRNA mutation that can be used as a target to investigate the physical interaction between 16S and 23S rRNA.  相似文献   

13.
Role of the 5.8S rRNA in ribosome translocation.   总被引:1,自引:0,他引:1       下载免费PDF全文
Studies on the inhibition of protein synthesis by specific anti 5.8S rRNA oligonucleotides have suggested that this RNA plays an important role in eukaryotic ribosome function. Mutations in the 5. 8S rRNA can inhibit cell growth and compromise protein synthesis in vitro . Polyribosomes from cells expressing these mutant 5.8S rRNAs are elevated in size and ribosome-associated tRNA. Cell free extracts from these cells also are more sensitive to antibiotics which act on the 60S ribosomal subunit by inhibiting elongation. The extracts are especially sensitive to cycloheximide and diphtheria toxin which act specifically to inhibit translocation. Studies of ribosomal proteins show no reproducible changes in the core proteins, but reveal reduced levels of elongation factors 1 and 2 only in ribosomes which contain large amounts of mutant 5.8S rRNA. Polyribosomes from cells which are severely inhibited, but contain little mutant 5.8S rRNA, do not show the same reductions in the elongation factors, an observation which underlines the specific nature of the change. Taken together the results demonstrate a defined and critical function for the 5.8S rRNA, suggesting that this RNA plays a role in ribosome translocation.  相似文献   

14.
15.
A S Hui  D H Eaton    H A de Boer 《The EMBO journal》1988,7(13):4383-4388
In the specialized ribosome system, a distinct pool of mutated ribosomes is dedicated to the translation of one particular mRNA species. This was accomplished by altering the Shine-Dalgarno sequence on the mRNA and its complementary anti-Shine-Dalgarno sequence on the plasmid-borne 16S rRNA gene. Here, using the specialized ribosome system, we were able to introduce mutations in key regions of the 16S rRNA and could study their effect on translation in vivo. The C1400 region has been implicated to play a role in the actual mRNA decoding process. Several ribosomal mutations were introduced in this region. We showed that substitution of the evolutionary highly conserved C1400 residue by a G- or an A-residue inhibits ribosomal activity by 80% and 50% respectively, whereas, a C to a U change at this conserved position does not affect overall ribosomal activity. The adjacent stem structure (1410-1490) was also examined. Disruption of the stem by replacing either one of the arms of this stem, with a different sequence, inhibits ribosomal activity by approximately 80%. A small but significant restoration of translation could be achieved by recreating a complementary stem with a different sequence. We found that full reversion of activity could be obtained when such mutated ribosomes were made spectinomycin resistant by introducing a C to A substitution at position 1192 which is located far away in the secondary structure map of the 16S rRNA molecule. Based on these results we conclude that some, but not all, of the nucleotides in the conserved C1400 region play a key role in translation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Pseudouridine modifications in helix 69 (H69) of 23S ribosomal RNA are highly conserved among all organisms. H69 associates with helix 44 of 16S rRNA to form bridge B2a, which plays a vital role in bridging the two ribosomal subunits and stabilizing the ribosome. The three pseudouridines in H69 were shown earlier to play an important role in 50S subunit assembly and in its association with the 30S subunit. In Escherichia coli, these three modifications are made by the pseudouridine synthase, RluD. Previous work showed that RluD is required for normal ribosomal assembly and function, and that it is the only pseudouridine synthase required for normal growth in E. coli. Here, we show that RluD is far more efficient in modifying H69 in structured 50S subunits, compared to free or synthetic 23S rRNA. Based on this observation, we suggest that pseudouridine modifications in H69 are made late in the assembly of 23S rRNA into mature 50S subunits. This is the first reported observation of a pseudouridine synthase being able to modify a highly structured ribonucleoprotein particle, and it may be an important late step in the maturation of 50S ribosomal subunits.  相似文献   

17.
18.
The majority of constitutive proteins in the bacterial 30S ribosomal subunit have orthologues in Eukarya and Archaea. The eukaryotic counterparts for the remainder (S6, S16, S18 and S20) have not been identified. We assumed that amino acid residues in the ribosomal proteins that contact rRNA are to be constrained in evolution and that the most highly conserved of them are those residues that are involved in forming the secondary protein structure. We aligned the sequences of the bacterial ribosomal proteins from the S20p, S18p and S16p families, which make multiple contacts with rRNA in the Thermus thermophilus 30S ribosomal subunit (in contrast to the S6p family), with the sequences of the unassigned eukaryotic small ribosomal subunit protein families. This made it possible to reveal that the conserved structural motifs of S20p, S18p and S16p that contact rRNA in the bacterial ribosome are present in the ribosomal proteins S25e, S26e and S27Ae, respectively. We suggest that ribosomal protein families S20p, S18p and S16p are homologous to the families S25e, S26e and S27Ae, respectively.  相似文献   

19.
20.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号