首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by chronic progressive degeneration of motor neurons resulting in muscular atrophy, paralysis, and ultimately death. We have investigated the expression of Wnt1 and Fzd1 in the spinal cords of SOD1G93A ALS transgenic mice, SOD1G93A-transfected N2a cells, and primary cultured astrocytes from SOD1G93A transgenic mice. In addition, we provided further insight into the role of Wnt1 and Fzd1 in the pathogenesis of ALS transgenic mice and discuss the mechanisms underlying the Wnt signal pathway which may be useful in the treatment of ALS. The results indicate the involvement of Wnt1 and Fzd1 in the pathogenesis and development of ALS.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons, axon degeneration, and denervation of neuromuscular junctions (NMJ). Here we show that death receptor 6 (DR6) levels are elevated in spinal cords from post-mortem samples of human ALS and from SOD1G93A transgenic mice, and DR6 promotes motor neuron death through activation of the caspase 3 signaling pathway. Blocking DR6 with antagonist antibody 5D10 promotes motor neuron survival in vitro via activation of Akt phosphorylation and inhibition of the caspase 3 signaling pathway, after growth factor withdrawal, sodium arsenite treatment or co-culture with SOD1G93A astrocytes. Treatment of SOD1G93A mice at an asymptomatic stage starting on the age of 42 days with 5D10 protects NMJ from denervation, decreases gliosis, increases survival of motor neurons and CC1+ oligodendrocytes in spinal cord, decreases phosphorylated neurofilament heavy chain (pNfH) levels in serum, and promotes motor functional improvement assessed by increased grip strength. The combined data provide clear evidence for neuroprotective effects of 5D10. Blocking DR6 function represents a new approach for the treatment of neurodegenerative disorders involving motor neuron death and axon degeneration, such as ALS.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration, paralysis, and death. Mutant Cu,Zn-superoxide dismutase (SOD1) causes a subset of ALS by an unidentified toxic property. Increasing evidence suggests that chaperone dysfunction plays a role in motor neuron degeneration in ALS. To investigate the relationship between mutant SOD1 expression and chaperone dysfunction, we measured chaperone function in central nervous system tissue lysates from normal mice and transgenic mice expressing human SOD1 variants. We observed a significant decrease in chaperone activity in tissues from mice expressing ALS-linked mutant SOD1 but not control mice expressing human wild type SOD1. This decrease was detected only in the spinal cord, became apparent by 60 days of age (before the onset of muscle weakness and significant motor neuron loss), and persisted throughout the late stages. In addition, this impairment of chaperone activity occurred only in cytosolic but not in mitochondrial and nuclear fractions. Furthermore, multiple recombinant human SOD1 mutants with differing biochemical and biophysical properties inhibited chaperone function in a cell-free extract of normal mouse spinal cords. Thus, mutant SOD1 proteins may impair chaperone function independent of gene expression in vivo, and this inhibition may be a shared property of ALS-linked mutant SOD1 proteins.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.  相似文献   

6.
Xu Z  Chen S  Li X  Luo G  Li L  Le W 《Neurochemical research》2006,31(10):1263-1269
The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of Amyotrophic lateral sclerosis (ALS). SOD1-G93A transgenic mice and wild-type mice were randomly divided into EGCG-treated groups (10 mg/kg, p.o) and vehicle-treated control groups. Rotarod measurement was performed to assess the motor function of mice starting at the age of 70 days. Nissl staining to examine the number of motor neurons and CD11b immunohistochemical staining to evaluate activation of microglia in the lumbar spinal cords were conducted at the age of 120 days. In addition, for further observation of regulation of cell signaling pathways by EGCG, we used immunohistochemical analysis for nuclear factor kappa B (NF-κB) and cleaved caspase-3 as well as western blot analysis to determine the expression of nitric oxide synthase (iNOS) and NF-κB in the spinal cord. This study demonstrated that oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-κB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-κB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS.  相似文献   

7.
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive loss of motor neurons, but also of a dramatic gliosis characterized by reactive astrocytes and activated microglial cells. These changes are absent from the spinal cord of age-matched transgenic mice expressing normal SOD1 and of wild-type mice. We also demonstrate that, during the course of the disease, the expression of inducible nitric oxide synthase (iNOS) increases. In both early symptomatic and end-stage transgenic mSOD1 mice, numerous cells with the appearance of glial cells are strongly iNOS-immunoreactive. In addition, iNOS mRNA level and catalytic activity are increased significantly in the spinal cord of these transgenic mSOD1 mice. None of these alterations are seen in the cerebellum of these animals, a region unaffected by mSOD1. Similarly, no up-regulation of iNOS is detected in the spinal cord of age-matched transgenic mice expressing normal SOD1 or of wild-type mice. The time course of the spinal cord gliosis and iNOS up-regulation parallels that of motor neuronal loss in transgenic mSOD1 mice. Neuronal nitric oxide synthase expression is only seen in neurons in the spinal cord of transgenic mSOD1 mice, regardless of the stage of the disease, and of age-matched transgenic mice expressing normal SOD1 and wild-type mice. Collectively, these data suggest that the observed alterations do not initiate the death of motor neurons, but may contribute to the propagation of the neurodegenerative process. Furthermore, the up-regulation of iNOS, which in turn may stimulate the production of nitric oxide, provides further support to the presumed deleterious role of nitric oxide in the pathogenesis of ALS. This observation also suggests that iNOS may represent a valuable target for the development of new therapeutic avenues for ALS.  相似文献   

8.
Li L  Zhang X  Le W 《Autophagy》2008,4(3):290-293
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by selective loss of motor neurons (MNs). About 20% familial cases of ALS (fALS) carried the Cu, Zn-superoxide dismutase (SOD1) gene mutation, which plays a crucial role in the pathogenesis of fALS. There is evidence suggesting that macroautophagy can degrade mutated SOD1 in vitro. To investigate whether the mutant SOD1 can induce macroautophagy in vivo, we examined the LC3 processing in spinal cord and the activation status of macroautophagy in MNs of SOD1(G93A) transgenic mice at different stages. Our data demonstrated that autophagy was activated in spinal cord of SOD1(G93A) mice indicating a possible role of macroautophagy in the pathogenesis of ALS.  相似文献   

9.
Approximately 2% of amyotrophic lateral sclerosis (ALS) cases are caused by mutations in the super oxide dismutase 1 (SOD1) gene and transgenic mice for these mutations recapitulate many features of this devastating neurodegenerative disease. Here we show that the amount of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), two endocannabinoids that have neuroprotective properties, increase in spinal cord of SOD1(G93A) transgenic mice. This increase occurs in the lumbar section of spinal cords, the first section to undergo neurodegeneration, and is significant before overt motor impairment. Our results show that chronic neurodegeneration induced by a genetic mutation increases endocannabinoid production possibly as part of an endogenous defense mechanism.  相似文献   

10.

Background

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism.

Results

In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord.

Conclusion

Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and recent evidence has suggested that endoplasmic reticulum (ER) stress signaling is involved in the pathogenesis of ALS. Here we identified a small molecule, SUN N8075, which has a marked protective effect on ER stress-induced cell death, in an in vitro cell-based screening, and its protective mechanism was mediated by an induction of VGF nerve growth factor inducible (VGF): VGF knockdown with siRNA completely abolished the protective effect of SUN N8075 against ER-induced cell death, and overexpression of VGF inhibited ER-stress-induced cell death. VGF level was lower in the spinal cords of sporadic ALS patients than in the control patients. Furthermore, SUN N8075 slowed disease progression and prolonged survival in mutant SOD1 transgenic mouse and rat models of ALS, preventing the decrease of VGF expression in the spinal cords of ALS mice. These data suggest that VGF plays a critical role in motor neuron survival and may be a potential new therapeutic target for ALS, and SUN N8075 may become a potential therapeutic candidate for treatment of ALS.  相似文献   

12.
One of the causes of amyotrophic lateral sclerosis (ALS) is due to mutations in Cu,Zn-superoxide dismutase (SOD1). The mutant protein exhibits a toxic gain of function that adversely affects the function of neurons in the spinal cord, brain stem, and motor cortex. A proteomic analysis of protein expression in a widely used mouse model of ALS was undertaken to identify differences in protein expression in the spinal cords of mice expressing a mutant protein with the G93A mutation found in human ALS. Protein profiling was done on soluble and particulate fractions of spinal cord extracts using high throughput two-dimensional liquid chromatography coupled to tandem mass spectrometry. An integrated proteomics-informatics platform was used to identify relevant differences in protein expression based upon the abundance of peptides identified by database searching of mass spectrometry data. Changes in the expression of proteins associated with mitochondria were particularly prevalent in spinal cord proteins from both mutant G93A-SOD1 and wild-type SOD1 transgenic mice. G93A-SOD1 mouse spinal cord also exhibited differences in proteins associated with metabolism, protein kinase regulation, antioxidant activity, and lysosomes. Using gene ontology analysis, we found an overlap of changes in mRNA expression in presymptomatic mice (from microarray analysis) in three different gene categories. These included selected protein kinase signaling systems, ATP-driven ion transport, and neurotransmission. Therefore, alterations in selected cellular processes are detectable before symptomatic onset in ALS mouse models. However, in late stage disease, mRNA expression analysis did not reveal significant changes in mitochondrial gene expression but did reveal concordant changes in lipid metabolism, lysosomes, and the regulation of neurotransmission. Thus, concordance of proteomic and mRNA expression data within multiple categories validates the use of gene ontology analysis to compare different types of "omic" data.  相似文献   

13.
《Cytotherapy》2022,24(8):789-801
Background aimsAmyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. Neuroinflammation in the spinal cord plays a pivotal role in the pathogenesis of ALS, and microglia are involved in neuroinflammation. Microglia mainly have two opposite phenotypes involving cytotoxic and neuroprotective properties, and neuroprotective microglia are expected to be a novel application for the treatment of ALS. Therefore, to establish a clinically applicable therapeutic method using neuroprotective microglia, the authors investigated the effect of inducing neuroprotective microglia-like cells from bone marrow for transplantation into ALS model mice.MethodsBone marrow-derived mononuclear cells were isolated from green fluorescent protein mice and cultured using different protocols of cytokine treatment with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4. Cells with a high potency of proliferation and differentiation into microglia were evaluated by gene analysis, flow cytometry and direct neuroprotective effects in vitro. These cells were named bone marrow-derived inducible microglia-like (BM-iMG) cells and transplanted into the spinal cords of ALS model mice, and behavioral tests, immunohistochemistry and gene expression profiling were performed.ResultsThree-day GM-CSF and 4-day GM-CSF + IL-4 stimulations were most effective in inducing BM-iMG cells from the bone marrow. Transplantation of BM-iMG cells improved motor function, prolonged survival and suppressed neuronal cell death, astrogliosis and microgliosis in the spinal cords of ALS mice. Moreover, neuroprotective genes such as Arg1 and Mrc1 were upregulated, whereas pro-inflammatory genes such as Nos2 and Il6 were downregulated.ConclusionsIntraspinal transplantation of BM-iMG cells demonstrated therapeutic effects in a mouse model of ALS. Further studies and clinical applications in patients with ALS are expected in the future.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.  相似文献   

15.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   

16.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with selective degeneration of motor neurons in the central nervous system. The pathophysiology of ALS is not well understood. We have used 1H-[13C]-NMR spectroscopy together with an administration of [1,6-13C2]glucose and [2-13C]acetate in female and male SOD1G37R mice to assess neuronal and astroglial metabolic activity, respectively, in the central nervous system in ALS condition. The female (p?=?0.0008) and male (p?<?0.0001) SOD1G37R mice exhibited decreased forelimb strength when compared with wild-type mice. There was a reduction in N-acetylaspartylglutamate level, and elevation in myo-inositol in the spinal cord of female and male SOD1G37R mice. The transgenic male mice exhibited increased acetate oxidation in the spinal cord (p?=?0.05) and cerebral cortex (p?=?0.03), while females showed an increase in the spinal cord (p?=?0.02) only. As acetate is transported and preferentially metabolized in the astrocytes, the finding of increased rate of acetate oxidation in the transgenic mice is suggestive of astrocytic involvement in the pathogenesis of ALS. The rates of glucose oxidation in glutamatergic (p?=?0.0004) and GABAergic neurons (p?=?0.0052) were increased in the cerebral cortex of male SOD1G37R mice when compared with the controls. The female mice showed an increase in glutamatergic (p?=?0.039) neurometabolic activity only. The neurometabolic activity was unperturbed in the spinal cord of either sex. These data suggest differential changes in neurometabolic activity across the central nervous system in SOD1G37R mice.

  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in superoxide dismutase (SOD1) are associated with familial ALS and lead to SOD1 protein misfolding and aggregation. Here we show that the molecular chaperone, HSJ1 (DNAJB2), mutations in which cause distal hereditary motor neuropathy, can reduce mutant SOD1 aggregation and improve motor neuron survival in mutant SOD1 models of ALS. Overexpression of human HSJ1a (hHSJ1a) in vivo in motor neurons of SOD1G93A transgenic mice ameliorated disease. In particular, there was a significant improvement in muscle force, increased motor unit number and enhanced motor neuron survival. hHSJ1a was present in a complex with SOD1G93A and led to reduced SOD1 aggregation at late stages of disease progression. We also observed altered ubiquitin immunoreactivity in the double transgenic animals, suggesting that ubiquitin modification might be important for the observed improvements. In a cell model of SOD1G93A aggregation, HSJ1a preferentially bound to mutant SOD1, enhanced SOD1 ubiquitylation and reduced SOD1 aggregation in a J-domain and ubiquitin interaction motif (UIM) dependent manner. Collectively, the data suggest that HSJ1a acts on mutant SOD1 through a combination of chaperone, co-chaperone and pro-ubiquitylation activity. These results show that targeting SOD1 protein misfolding and aggregation in vivo can be neuroprotective and suggest that manipulation of DnaJ molecular chaperones might be useful in the treatment of ALS.  相似文献   

18.
Transient receptor potential vanilloid 4 (TRPV4) is a broadly expressed Ca2+-permeable cation channel in the vanilloid subfamily of transient receptor potential channels. It is activated by warm temperature, lipids downstream of arachidonic acid metabolism, hypoosmolarity, or mechanical stimulation. In the present study, we used SOD1G93A mutant transgenic mice as the animal model of amyotrophic lateral sclerosis (ALS) and investigated the changes of TRPV4 immunoreactivity in the central nervous system of these mice by immunohistochemical studies. An increased expression of TRPV4 was pronounced in the cerebral cortex, hippocampal formation, thalamus, cerebellum and spinal cord of symptomatic SOD1G93A transgenic mice. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of SOD1G93A transgenic mice. In the hippocampal formation, pyramidal cells of the CA1-3 areas and in the granule cells of the dentate gyrus demonstrated increased TRPV4 immunoreactivity. In addition, TRPV4 immunoreactivity was increased in the spinal cord, thalamus and cerebellum of the symptomatic SOD1G93A transgenic mice. This study, which showed increased TRPV4 in different brain and spinal cord regions of SOD1G93A transgenic mice, may provide clues to the understanding of many basic neuronal functions in ALS. These findings suggest a role for TRPV4 in the neuronal functions in ALS but the mechanisms and functional implications of increased TRPV4 require elucidation.  相似文献   

19.
Transgenic mice carrying mutant Cu/Zn superoxide dismutase (SOD1) recapitulate the motor impairment of human amyotrophic lateral sclerosis (ALS). The amyloid-beta (Abeta) peptide associated with Alzheimer's disease is neurotoxic. To investigate the potential role of Abeta in ALS development, we generated a double transgenic mouse line that overexpresses SOD1(G93A) and amyloid precursor protein (APP)-C100. The transgenic mouse C100.SOD1(G93A) overexpresses Abeta and shows earlier onset of motor impairment but has the same lifespan as the single transgenic SOD1(G93A) mouse. To determine the mechanism associated with this early-onset phenotype, we measured copper and zinc levels in brain and spinal cord and found both significantly elevated in the single and double transgenic mice compared with their littermate control mice. Increased glial fibrillary acidic protein and decreased APP levels in the spinal cord of C100.SOD1(G93A) mice compared with the SOD1(G93A) mice agree with the neuronal damage observed by immunohistochemical analysis. In the spinal cords of C100.SOD1(G93A) double transgenic mice, soluble Abeta was elevated in mice at end-stage disease compared with the pre-symptomatic stage. Buffer-insoluble SOD1 aggregates were significantly elevated in the pre-symptomatic mice of C100.SOD1(G93A) compared with the age-matched SOD1(G93A) mice, correlating with the earlier onset of motor impairment in the C100.SOD1(G93A) mice. This study supports abnormal SOD1 protein aggregation as the pathogenic mechanism in ALS, and implicates a potential role for Abeta in the development of ALS by exacerbating SOD1(G93A) aggregation.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. Despite the fact that many different therapeutic strategies have been applied to prevent disease progression, no cure or effective therapy is currently available for ALS. We found that l-arginine protects cultured motor neurons from excitotoxic injury. We also found that l-arginine supplementation both prior to and after the onset of motor neuron degeneration in mtSOD1 (G93A) transgenic ALS mice significantly slowed the progression of neuropathology in lumbar spinal cord, delayed onset of motor dysfunction, and prolonged life span. Moreover, l-arginine treatment was associated with preservation of arginase I activity and neuroprotective polyamines in spinal cord motor neurons. Our findings show that l-arginine has potent in vitro and in vivo neuroprotective properties and may be a candidate for therapeutic trials in ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号