首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of calcium in nickel tolerance was studied in the nickel hyperaccumulator plant Alyssum inflatum by gene transformation of CAX1, a vacuolar membrane transporter that reduces cytosolic calcium. CAX1 from Arabidopsis thaliana with a CaMV35S promoter accompanying a kanamycin resistance gene was transferred into A. inflatum using Agrobacterium tumefaciens. Transformed calli were sub-cultured three times on kanamycin-rich media and transformation was confirmed by PCR using a specific primer for CAX1. At least 10 callus lines were used as a pool of transformed material. Both transformed and untransformed calli were treated with varying concentrations of either calcium (1–15 mM) or nickel (0–500 µM) to compare their responses to those ions. Increased external calcium generally led to increased callus biomass, however, the increase was greater for untransformed callus. Further, increased external calcium led to increased callus calcium concentrations. Transformed callus was less nickel tolerant than untransformed callus: under increasing nickel concentrations callus relative growth rate was significantly less for transformed callus. Transformed callus also contained significantly less nickel than untransformed callus when exposed to the highest external nickel concentration (200 µM). We suggest that transformation with CAX1 decreased cytosolic calcium and resulted in decreased nickel tolerance. This in turn suggests that, at low cytosolic calcium concentrations, other nickel tolerance mechanisms (e.g., complexation and vacuolar sequestration) are insufficient for nickel tolerance. We propose that high cytosolic calcium is an important mechanism that results in nickel tolerance by nickel hyperaccumulator plants.  相似文献   

2.
Effect of high-frequency vibration on growth rate, membrane stability and activities of some antioxidant enzymes were studied in callus tissues of Hyoscyamus kurdicus. Calli initiated from leaf (LE), shoot (SE) and root (RE) explants, and sinusoidal vibrations at 0, 50, 100 and 150 Hz for 30 min were applied on the H. kurdicus calli. Results showed that sinusoidal vibration at 50 and 100 Hz promoted the growth rate as compared to control, and the optimum growth was found at 50 Hz. Sinusoidal vibration increased significantly protein and proline contents and activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POX) enzymes, and decreased total carbohydrate, H2O2 level and CAT activity as compared to control. Lipid peroxidation also decreased under sinusoidal vibration in all the calli, and the maximum percentage of decrease was observed at 50 Hz. Native polyacrylamide gel electrophoresis indicated different isoform profiles in vibration treated and untreated plants concerning antioxidant enzymes. The responses of different types of calluses were different, and RE callus showed the highest growth, membrane stability and antioxidant enzymes activity as compared to LE and SE calli. These results suggest sinusoidal vibration at optimum frequency could improve callus growth by induction of antioxidative enzymes activity and membrane stability in calli of H. kurdicus.  相似文献   

3.

Background

Phospholipases D (PLD) are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA). PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor.

Methodology/Principal findings

Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA). As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut), which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM) mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18∶2- and 16∶0/18∶3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates.

Conclusions

MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18∶2- and 16∶0/18∶3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.  相似文献   

4.
Jasmonic acid (JA) is regarded as an endogenous regulator which plays an important role in regulating plant growth, development and stress response. Using the seedlings of A. thaliana ecotype Col-0 (wild-type, WT), phospholipase Dδ (PLDδ) deficient mutant (pldδ), the G protein α subunit (GPA1) deficient mutant (gpa1-4), 9-Lipoxygenase (9-LOX) deficient mutants (lox1 and lox5) as materials, the effects of JA responding to osmotic stress and the functions of G protein and PLDδ in this response were investigated. The results showed that GPA1 involved in the regulation of JA to PLDδ under osmotic stress. Both GPA1 and PLDδ participated in the regulation of JA on the seed germination and osmotic tolerance. Exogenous MeJA reduced the EL and MDA in WT, but increased the EL and MDA in gpa1-4 and pldδ, indicating that GPA1 and PLDδ were involved in the protection of JA on the membrane. The genes expression levels, and the activities of PLDδ and LOX1 were significantly induced by osmotic stress. The LOX activity and JA content in pldδ seedings were lower obviously than those in WT, but were markedly increased and were higher than WT after applying phosphatidic acid (PA). These results demonstrated that JA responded to osmotic stress by regulating G protein and PLDδ in A. thaliana. PLDδ was located upstream of 9-LOX and involved in the JA biosynthesis.  相似文献   

5.
植物磷脂酶D基因表达与衰老的关系   总被引:2,自引:0,他引:2  
磷脂酶D (PLD)是一种重要的磷脂水解酶,在植物细胞中普遍存在。磷脂酶D能激活许多重要的细胞生理功能,包括调控细胞膜的重建、跨膜信号传导及细胞内调控、细胞骨架组装、防御反应以及种子萌发和植物的衰老等。对磷脂酶D的基本特性、磷脂酶D基因特异性表达模式及其活性抑制与植物衰老的关系进行了综述,并探讨和展望了今后植物磷脂酶D基因的研究方向。  相似文献   

6.
Ephedra foliata, (Gymnosperm) is a pharmaceutically important plant known for the last 5,000 years and has a number of medicinal properties. We describe here for the first time, a method for plant regeneration from callus established from axillary buds as explant, with the aim of optimizing alkaloids production in vitro. The tissue cultures initiated are being maintained for the last 3 years on Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium containing 0.5 mg l?1 each of 2, 4-D and Kin. Maintained callus cultures exhibited regeneration potential and maximum number (23.5 ± 0.44 shoots per culture vessel) of shoots with an average height (4.94 ± 0.23 cm) was achieved on MS medium containing combination of 0.25 mg l?1 each of Kin, BA and 0.1 mg l?1 of NAA. About 84.9 % regenerated shoots were rooted under ex vitro conditions on Soilrite®, if their base was treated with 500 mg l?1 of IBA for 5 min. The rooted plantlets were successfully acclimatized under greenhouse conditions with ≈80 % survival rate. We analyzed alkaloid contents of tissue culture raised plants/callus as affected by the different concentrations and combination of two additives, i.e., l-phenylalanine and IBA. The alkaloid production was higher in the in vitro grown cultures than field-grown plants. Highest alkaloid content was recorded in callus culture on M5 medium having 0.5 mg l?1 each of 2, 4-D and Kin, 100 mg l?1 l-phenylalanine and 5 mg l?1 IBA. The present protocol may be applicable for the large-scale cultivation of E. foliata and selection of cell line having higher secondary metabolite contents of this pharmaceutically important threatened plant species.  相似文献   

7.
Phlomis armeniaca Willd. is a medicinal plant in the Lamiaceae family endemic to Turkey. The present study describes efficient plant regeneration and callus induction protocols for P. armeniaca and compares phenolic profiles, total phenol and flavonoid contents, and free radical scavenging activity of in vitro-derived tissues. Stem node explants from germinated seedlings were cultured on Murashige and Skoog medium (MS) supplemented with 75 plant growth regulator (PGR) combinations. The highest shoot number per explant, frequency of shoot proliferation, and frequency of highly proliferated, green, compact callus were obtained on MS medium containing 0.25 mg L?1 thidiazuron (TDZ) and 0.25 mg L?1 indole-3-acetic acid (IAA). The best root formation was on MS basal medium (control). Methanol extract of leaves obtained from regenerants contained higher total phenol and flavonoid contents than the callus extract. The callus extract showed stronger free radical scavenging activity than leaves with IC50 [concentration inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical] values of 4.30 ± 0.08 and 2.21 ± 0.04 mg g?1 dry weight in leaves and callus, respectively. Apigenin, caffeic acid, p-coumaric acid, luteolin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, and chlorogenic acid were detected by liquid chromatography–electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS/MS) analysis in in vitro-grown leaves and callus tissue. Rutin hydrate, p-coumaric acid, and vanillic acid were found at approximately tenfold higher levels in callus than in leaves. This new micropropagation protocol, the first for P. armeniaca, could be used in industrial production for new herbal tea and germplasm conservation.  相似文献   

8.
Eclipta alba (False daisy) is an important medicinal plant with well-known antihepatotoxic activity. However, no previous in vitro studies are available for its callus culture for increased production of antioxidant secondary metabolites. Herein, we maintained a competent protocol for callus culture of E. alba using stem and leaf explants grown on MS medium containing various concentrations of thidiazuron, 6-benzylaminopurine (BAP) either alone or in association with α-naphthalene acetic acid (NAA). Among all the applied plant growth regulators, BAP along with NAA resulted in maximal dry biomass of 18.0 and 13.8 g/l for stem and leaf explants, respectively. Furthermore, the highest production of phenolics (375.7 mg/l for stem-associated callus and 298 mg/l for leaf-associated callus) and flavonoids (62.0 and 52.3 mg/l for stem- and leaf-associated callus, respectively) were found to be present in optimized callus culture. Antioxidant activity was also elucidated for both stem and leaf derived calli. The highest antioxidant activities (~?93.5%) were witnessed for stem and leaf associated calli at set concentrations of 3.0 mg/l BAP?+?1.0 mg/l NAA and 4.0 mg/l BAP, respectively. High-performance liquid chromatography analyses revealed optimum accumulation of coumarin (1.98 mg/g DW) and wedelolactone (49.63 mg/g DW) in leaf associated callus and desmethylwedelolactone (69.96 mg/g DW), β-amyrin (0.8179 mg/g DW) and eclalbatin (0.3202 mg/g DW) in stem associated callus at optimized concentration.  相似文献   

9.
We previously identified a novel protein elicitor, PebC1, from Botrytis cinerea and described its enhancement of plant growth, drought tolerance and disease resistance in tomato. Here, we have investigated the defense-associated molecular responses in Arabidopsis thaliana after treatment with recombinant PebC1. PebC1 was expressed in Escherichia coli. Recombinant protein treatments improved plant resistance to Botrytis infection and maintained plant defenses for more than 21 days. The purified protein at 10 μg ml?1 activated extracellular medium alkalization (pH) and reactive oxygen species and nitric oxide generation and also induced defense gene expression. Arabidopsis mutants that are insensitive to salicylic acid had increased resistance to Botrytis infection after PebC1 treatment but PebC1 did not affect the resistance of mutants with jasmonic acid and ethylene transduction pathways. The results suggest that PebC1 can function as an activator of plant disease resistance and can promote disease resistance to Botrytis in A. thaliana through the ethylene signal transduction pathway.  相似文献   

10.
The shelf-life of fresh-cut tomatoes mainly depends on loss of tissue integrity and firmness that occurs also in intact fruits after long-term cold storage due to chilling injury. Round-fruit tomatoes (Solanum lycopersicum L.) cv. Jama were stored in 1.1-L plastic (polyethylene) fresh-cut produce containers as 10.0-mm-thick tomato slices and as intact tomatoes at 4 ± 0.5 °C. The aim of this work was to study the loss of membrane integrity and biochemical processes involved in membrane disruption. Electrolyte leakage and lipid peroxidation were studied at different stages of maturity: mature green, pink (PK), fully ripe and two different storage temperatures: 4 and 15 °C. The tomato slices of PK stage stored at 4 °C did not show changes for both parameters, while significant increase in membrane leakage and lipid peroxidation was observed at 15 °C, especially after 24 h of storage. The enzymes showed a simultaneous increase in their activities with a rise in electrolyte leakage and lipid peroxidation after 7 days of storage. Finally, phospholipase C (PLC) and phospholipase D (PLD) were investigated for intact fruit and tomato slices stored at 4 °C. The PLC had higher activity compared with PLD. In conclusion, the loss of membrane integrity in fresh-cut tomatoes is mainly affected by ripening stages, storage temperature and duration. The wounds enhance the PLC and PLD activities and they play a role late during storage.  相似文献   

11.
To pursue genetic improvement of lily, efficiency of both regeneration and transformation from callus cultures induced from different explants were evaluated in multiple cultivars. Thirty-five callus lines induced from filaments or styles and one control callus line derived from bulb scales of in total twenty lily cultivars representing Lilium longiflorum, Oriental × Trumpet and Longiflorum × Asiatic hybrids were maintained on a medium with 8.3 μM picloram (PIC). In this study, they were tested for their regeneration potential by transferring them onto a regeneration medium supplemented with 0.4 μM PIC and 0.044 μM 6-benzyladenine. Regeneration was obtained in all cultivars examined and the percentage varied from zero to 89 % in the 36 callus lines. Regeneration frequency was significantly influenced by the genotype (cultivar). Subculturing the calli every 4 weeks by refreshing the regeneration medium contributed positively to bulblet formation, when compared to an eight week subculture frequency. It was found that the regeneration ability generally decreased with an increasing age of the callus cultures for all cultivars. The origin of the callus (style or filament) did not lead to significant differences in regeneration frequency, but there was an interaction between callus origin and genotype. Calli of eight randomly chosen cultivars were co-cultivated with Agrobacterium tumefaciens strain AGL0 carrying binary vectors with the gus gene as reporter and putative transgenic plants were produced. GUS histochemical assays demonstrated transient and stable expression of the gus gene in both calli and regenerated lily plants. Transient expression frequencies ranged from 0.3 to 20.6 % while stable transformation was much lower, only 1.4 % as the maximum.  相似文献   

12.
以尾巨桉优良无性系无菌苗茎段为外植体,通过对多种不同浓度生长调节剂组合的优化,进行胚状体诱导研究;并对胚性与非胚性愈伤组织进行形态解剖学观察、相关生理指标检测以及相关基因荧光定量PCR分析,以揭示尾巨桉胚性愈伤组织非胚性化发生的机理,为建立尾巨桉体细胞胚胎再生体系提供参考。结果表明:(1)胚性愈伤组织在MS+0.1mg/L NAA+0.01mg/L TDZ培养基中诱导得到胚状体,外植体经过0.5mol/L蔗糖处理12h有助于胚性愈伤组织产生胚状体,胚状体最高发生率为16.7%。(2)尾巨桉胚性与非胚性愈伤组织石蜡切片观察发现,两者的细胞形态特征存在明显的差异,胚性愈伤组织细胞体积小,排列紧密,表现出典型的胚性细胞特征,而非胚性细胞比较大,排列疏松,细胞呈不规则形状。(3)生理生化指标检测结果表明,非胚性愈伤组织中蛋白质含量、SOD、PPO及CAT活性均显著低于胚性愈伤组织,非胚性愈伤组织中木质素、可溶性糖含量以及PAL和POD活性要高于胚性愈伤组织,二者的反肉桂酸4-单加氧酶基因、淀粉磷酸化酶基因、谷胱甘肽硫转移酶基因、葡萄糖-1-磷酸腺苷酸转移酶基因、葡萄糖六磷酸异构酶基因、分支酸合酶基因以及苯丙氨酸解氨酶基因表达差异也达到显著水平。  相似文献   

13.
Cistanche tubulosa is one of the most valuable desert medicinal plants, whose cell culture investigations have been rarely reported before. Phenylethanoid glycosides (PhGs) are its major components with a wide range of pharmacological activities. In this article, callus culture and cell suspension of C. tubulosa were established. Fleshy stems were found to be the most suitable explants for callus induction, and the optimal medium for induction was B5 solid medium supplemented with 0.8 g/L casein hydrolysate, 20 g/L sucrose, 2 mg/L naphthaleneacetic acid (NAA), and 1 mg/L 6-benzyladenine (6-BA). Based on qualitative and quantitative determination of two PhGs (echinacoside and acteoside) contents, the effects of carbon source concentration, precursor feeding, and elicitor treatments on cell growth and two PhGs accumulation in cell suspension cultures were investigated. Thirty g/L was the optimal initial sucrose concentration to obtain the high yield of biomass (9.29 g dry weight, DW) per liter cell suspension culture, echinacoside (12.14%, based on DW cells) and acteoside (2.17%). Precursor feeding also had a positive effect on PhGs accumulation. Feeding of precursor tyrosine (1 g/L) to the cell cultures increased the levels of echinacoside to 18.83% and acteoside to 2.92%, which were approximate 1.5 times of the corresponding levels in the control group. Methyl jasmonate (MJ) was the ideal elicitor for PhGs accumulations in C. tubulosa, particularly for eliciting acteoside production. The maximum echinacoside and acteoside contents reached 21.18 and 5.24% after 12 h of treatment with 200 µM MJ, respectively, which were approximate twofold higher than those in wild plant.  相似文献   

14.
Italian ryegrass (Lolium multiflorum) is an annual grass considered as one of the most important temperate forage grasses in the world. However, it is recalcitrant to plant tissue culture techniques hindering its genetic manipulation. Epichloë occultans is an endophytic fungus associated with L. multiflorum. This symbiosis causes improvements in physiological and ecological traits of the host plants. The objective of this work was to study the effect of E. occultans on L. multiflorum micropropagation. We compared the response of endophyte-infected (E+) and endophyte-free (E?) seeds in different micropropagation stages. The E+ seeds were more successful than E? seeds in in vitro germination (83?±?5 vs. 63?±?6%), callus induction (78?±?5 vs. 57?±?6%), callus proliferation (average diameter of 21.5?±?1.3 mm in two subcultures vs 17.3?±?0.8 mm in three subcultures) and plant regeneration from callus (83?±?7 vs. 30?±?8%). These results indicate that E. occultans enhances significantly L. multiflorum micropropagation. The use of endophyte-infected (E+) seeds can be a solution to make this grass more amenable to different biotechnological tools, such as the genetic transformation.  相似文献   

15.
A protocol for somatic embryogenesis was developed for Thymus hyemalis, a wild species in the Mediterranean region. First, the effects of explant type, plant growth regulators [kinetin (KIN) and 2,4-dichlorophenoxyacetic acid (2,4-D)], and genotype on callus induction were tested. For callus induction, the node was the best explant; Murashige and Skoog (MS) medium supplemented with 1.8 μM 2,4-D and 0.5 μM KIN was the best medium, and the genotype had a highly significant effect. To induce production of somatic embryos, the effects of KIN, 6-benzylaminopurine (BAP), and naphthalene acetic acid (NAA) were evaluated. After 5 wk of culture in the dark, MS medium supplemented with 4.44 μM BAP, 0.54 μM NAA, and 4.65 μM KIN gave the highest percentage (85%) of embryogenic callus and the highest number of somatic embryos (27.00) per 45 mg of callus. For germination and plant recovery, somatic embryos were transferred to MS medium without plant growth regulators and plantlet conversion from developed somatic embryos was 90%. In vitro plants with adequate growth and sufficient root systems were subsequently transplanted into a mixture of peat and vermiculite (2:1?v/v) under greenhouse conditions. The survival rate of the plantlets under ex vitro conditions was 80%.  相似文献   

16.
Although basal medium optimization is a key factor in the success of tissue culture, its mineral composition is frequently disregarded when optimizing in vitro propagation protocols. A previous work on Eucalyptus dunnii micropropagation suggests that excessive callus formation and leaf chlorosis are related to specific nutritional conditions of the basal media. Recently, a novel basal medium based on the mineral nutrient analysis of E. dunnii young stump shoots was developed and successfully tested in plant regeneration and micropropagation of E. dunnii, avoiding all these issues. Considering this basal medium as an ideal growth condition, a mild deprivation of each macro and micronutrient and of the total organic fraction was imposed to E. dunnii in vitro cultures for 30 d. As a result, K, Mg, Mn, Cl, Zn, Mo, Ni or Co deprivation quantitatively affected growth and development of axillary shoots. Moreover, leaf chlorosis and the development of organogenic callus under Fe deficiency, and leaf drop along with shoot tip necrosis under N deficiency were observed. These symptoms suggest that nutrient content in E. dunnii tissues needs to be above 420.3 mg kg?1 for Fe and 27.7 g kg?1 for N to avoid the symptoms of leaf chlorosis and shoot tip necrosis. Additionally, the main role of Mn in quantitative responses and the antagonism between ions, especially for Mg/K and Mg/Zn, were denoted by the multivariate analysis. Overall, these results make a relevant contribution to the optimization of in vitro propagation of E. dunnii and other hard-to-propagate related species.  相似文献   

17.
Small heat shock proteins (sHSPs) are the critical components of responses to various environmental stresses. However, few have been functionally characterised in Primula. In this study, we cloned a sHSP gene, PfHSP17.1, which is highly up-regulated in the leaves of Primula forrestii exposed to thermal stress (42 °C for 2 h). Sequence alignment and phylogenetic analysis indicated that PfHSP17.1 is a member of the plant cytosolic class I sHSPs. This gene was basally and ubiquitously expressed in different plant organs. The expression of PfHSP17.1 was also triggered remarkably by salt, drought and oxidative stress conditions but was only slightly induced by abscisic acid. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.1 displayed increased thermotolerance and higher resistance to salt and drought compared with wild-type plants. These results highlight the important role that PfHSP17.1 plays in diverse physiological and biochemical processes related to adverse conditions.  相似文献   

18.
Fruit bodies of Auricularia auricula-judae are often subjected to drought stress and became dormant. The responses of antioxidant defenses and membrane damage to drought stress were investigated in this study. Picked fruit bodies were exposed to sunlight and dehydrated naturally and samples were collected at different levels of water loss (0, 10, 30, 50, and 70 %) for determination of electrolyte leakage (EL); contents of malondialdehyde (MDA), ascorbic acid (AsA) and reduced glutathione (GSH); and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Results showed that membrane permeability (assessed by EL) and membrane lipid peroxidation (MDA content) remained unchanged at all levels of water loss studied. Contents of AsA and GSH showed no change at 0, 10 and 30 % of water loss, however, both of them increased significantly at 50 and 70 % of water loss. SOD activity significantly increased with the rising of water loss from 0 to 30 %, reached the peak at 30 and 50 % of water loss, and then significantly decreased at 70 % of water loss. A gradual increase in POD and CAT activities was observed when water loss rose from 0 to 50 %. As water loss went up to 70 %, POD activity remained the same as that at 50 %, but CAT activity decreased. The results indicate that the increased activities of enzymatic antioxidants (SOD, CAT and POD) and contents of non-enzymatic antioxidants (AsA and GSH) in fruit bodies of A. auricula-judae can effectively scavenge reactive oxygen species, cause no damage to cell membranes as demonstrated by the unchanged EL and MDA content, and contribute to dormancy under drought stress.  相似文献   

19.
A method has been developed for embryogenic cell suspension cultures, plant regeneration and transformation of the important ornamental lily genotype (Lilium tenuifolium oriental × trumpet ‘Robina’). Bulb scales, filaments, ovaries and stem axis tissues were used as explants for callus induction in Murashige and Skoog (MS) medium with additions of growth regulators: picloram on its own, or in combination with 1-naphthaleneacetic acid (NAA), and thidiazuron (TDZ). The results show that the optimum medium for callus induction in bulb scale and filament tissue is MS + picloram 1.0 mg L?1, and for the ovary, it is MS + picloram 1.5 mg L?1. The stem axis had the highest rate (89.2 %) of callus induction with MS + NAA 2.2 mg L?1 + TDZ 0.1 mg L?1. The suspension cultures were established with the combination of NAA and TDZ with 2–5 mm cell clusters. These took a long time compared with suspension cultures established by picloram with 1–3 mm cell clusters. In three suspension cultures induced by picloram, the best callus from the point of view of proliferation and regeneration was derived from filaments. For plant regeneration, the growth rate of suspension cultures from the stem axis was higher than from the other three suspension culture induced by picloram. Vector pCAMBIA1301 with the β-glucuronidase (GUS) gene as reporter was transformed by Agrobacterium mediation into suspension cultures initiated from filament and stem axis material. After co-cultivation, the numbers of blue spots in material from the two sources were 26.8 ± 4.3 and 24.0 ± 4.7, respectively (difference not significant). Hygromycin-resistant callus was successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were also confirmed by the GUS histochemical assay, polymerase chain reaction.  相似文献   

20.
A member of the LEAFY COTYLEDON gene family encoding a HAP3 (heme activated protein 3) subunit of the CCAAT box-binding factor was isolated and termed as Citrus sinensis LEAFY COTYLEDON 1-LIKE (CsL1L). The deduced amino acid sequence shared a high similarity with LEAFY COTYLEDON 1-LIKE (L1L) in Arabidopsis thaliana, Phaseolus coccineus, Theobroma cacao, and Helianthus annuus. Quantitative RT-PCR results indicated that CsLIL was highly expressed in embryogenic callus, somatic embryos and immature seeds, but was rarely detected in non-embryogenic callus, vegetative and floral tissues. Ectopic expression of CsL1L in vegetative tissues could induce embryo-like structures, suggesting that CsL1L has the capability to transit cells from vegetative to embryogenic phase. Comparison of CsL1L expression in the newly formed and long-term subcultured embryogenic calli of W. Murcott tangor (C. sinensis × C. reticulata) and Hongkong kumquat (Fortunella hindsii Swingle) revealed that the potency of embryogenesis was related to the level of CsL1L expression. Sub-cellular localization analysis indicated that CsL1L was a nuclear protein in plant. A microsatellite in CsL1L was verified with polymorphism among the citrus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号