首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Excitotoxicity and oxidative stress are central to the pathology of the nervous system, and inhibition of excitotoxicity induced by glutamate is one of the therapeutic goals determined for stroke. The present study aimed to investigate the effects of Astaxanthin, a potent natural antioxidant, on complications caused by acute cerebral stroke. In this research, 60 male Wistar rats were used which were divided into 5 groups as follow: (1) the sham group (vehicle), (2) the ischemic control group (vehicle), and the ischemic groups treated by Astaxanthin with doses of 25, 45, and 65 mg/kg. In the ischemic groups, ischemic model was performed by middle cerebral artery occlusion (MCAO) method, and the Astaxanthin administration was carried out after the artery occlusion and before opening the artery. The obtained results indicated that Astaxanthin could significantly reduce stroke volume, neurological deficits, and lipid peroxidation. Moreover, it was able to restore total oxidant status (TOS) and caspase 3 level to the normal level. The activity of antioxidant enzyme glutathione peroxidase (GPX), and the expression of catalase, GPx and nuclear factor kappa B (NFκb) genes, which were reduced after ischemia, were increased. This phenomenon was particularly pronounced for glutamate transporter 1 (GLT-1). Furthermore, Astaxanthin decreased the augmented pro-apoptotic gene Bax and restored the reduced Bcl2 expression to the normal level. Significant effects on the P53 and PUMA expression were not observed. Overall, the medium dosage of Astaxanthin appears to be more effective in reducing the complications of ischemia, particularly on our major study endpoints (stroke volume and neurological defects). Longer studies with a more frequent administration of Astaxanthin are required to better understand the precise mechanism of Astaxanthin.

  相似文献   

2.
目的:通过研究homer1a基因敲除小鼠脑缺血再灌注损伤及海马区星形胶质细胞活化、数目形态变化,探讨homer1a基因在脑缺血损伤中的作用及机制。方法:取雄性homer1a基因敲除(Knock Out,KO)小鼠及同窝野生型(Wild Type,WT)小鼠各15只,分为基因敲除假手术组(Sham Knock Out,SKO,n=3)、基因敲除型缺血2 h再灌注24 h组(Model Knock Out,MKO,n=12)、野生型假手术组(Sham Wild Type,SWT,n=3)及野生型缺血2 h再灌24h组(Model Wild Type,MWT,n=12)。线栓法闭塞小鼠大脑中动脉制作脑缺血再灌注损伤模型(middle cerebral artery occlusion and reperfusion,MCAO/R),在缺血再灌注损伤前(0 h)及缺血再灌注后3 h、6 h、12 h、24 h后进行改良版神经损伤严重性评分(modified Neurological severity scores,m NSS)、2,3,5—氯化三苯基四氮唑(2,3,5triphenyltetrazolium chloride,TTC)染色、苏木素—伊红染色(Hematoxylin-eosin staining,HE)、原位末端转移酶标记技术(terminal deoxynucleotidyl transferase(Td T)-mediated deoxyuridine triphosphate(d UTP)nick end labeling,TUNEL)检测及免疫荧光染色观察海马区星形胶质细胞神经纤维酸性蛋白(Glial Fibrillary Acidic Protein,GFAP)改变。结果:SKO组、SWT组行为学m NSS评分均为0分,TTC染色未见梗死灶。TUNLE及GFAP染色阳性细胞数很少且未见统计学差异(P0.05)。脑缺血再灌注24 h后,MKO组m NSS评分较MWT组高;TTC染色MKO组较MWT组梗死百分比高;MKO组较MWT组TUNEL凋亡率高;GFAP免疫荧光染色阳性数MKO组少于MWT组,且均有统计学差异(P0.05)。结论:homer1a基因敲除加重了小鼠脑缺血再灌注损伤,星形胶质细胞可能参与并发挥复杂作用。  相似文献   

3.
Zhu  Jiangtao  Wu  Di  Zhao  Chenyu  Luo  Man  Hamdy  Ronald C.  Chua  Balvin H. L.  Xu  Xingshun  Miao  Zhigang 《Neurochemical research》2017,42(10):2949-2957
Neurochemical Research - Previous studies have demonstrated that plasma resistin levels were increased in patients with acute ischemic stroke. However, the role of resistin after ischemic brain...  相似文献   

4.
Mitochondrial autophagy (Mitophagy), the specific autophagic elimination of mitochondria, has been related with several forms of degenerative disease and mitochondrial dysfunction. It is involved in multiple cellular processes. In addition to one of its established key roles in the maintenance of normal cellular phenotype and function, there is growing interest in the concept that targeted modulation of mitophagy may reduce cerebral ischaemia/reperfusion injury. Induction of mitophagy results in selective clearance of damaged mitochondria in cells. In response to stress such as ischaemia/reperfusion, prosurvival and prodeath pathways are concomitantly activated in neuronal cells.  相似文献   

5.

Aim

20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI).

Methods

Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry.

Results

Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice.

Conclusion

These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up-regulation of 20-HETE formation in sEH-KO-mice.  相似文献   

6.
7.
目的:探究姜黄素后处理是否通过激活SIRT1/FOXO1信号通路抵抗小鼠脑缺血再灌注损伤。方法:小鼠脑缺血30 min,再灌注24 h建立脑缺血再灌注模型。手术前脑室内注射SIRT1特异性抑制剂EX527。再灌注后腹腔注射姜黄素。小鼠随机分为以下6组:假手术组;单纯姜黄素后处理组;缺血再灌注组;缺血再灌注+姜黄素后处理组;EX527预处理+缺血再灌注+姜黄素后处理组;EX527预处理+脑缺血再灌注组。再灌注24 h检测脑梗体积、Complex I活性、ROS含量以及SIRT1、Ac-FOXO1、Bax、Bcl-2、Caspase-3蛋白表达情况。结果:与手术组相比,姜黄素后处理组梗死区脑组织SIRT1的表达量及活性明显增加,脑梗体积降低,ROS含量降低而Complex I活性增高,Bcl-2的表达增高而Bax和Caspase-3的表达量降低(均P0.05)。阻断SIRT1信号通路后上述姜黄素脑保护作用均减弱(P0.05)。结论:我们的研究首次证实姜黄素后处理通过激活SIRT1/FOXO1信号通路,进而降低氧化应激与凋亡,最终减轻脑缺血再灌注损伤。  相似文献   

8.
Cyclooxygenase-2 (COX-2) is a mediator of hepatic ischemia and reperfusion injury (IRI). While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2−M/−M) to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2−M/−M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2−M/−M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2−M/−M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2−M/−M and WT mice. COX-2−M/−M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9) expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2−M/−M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s) other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.  相似文献   

9.
目的:研究orexin-A对缺血再灌注大鼠脑损伤的保护作用。方法:取成年雄性大鼠6只,观察MCAO前和MCAO后2 h、24h的生理学参数,界定后续指标参考时间。另取20只大鼠随机分为MCAO组、vehicle组、orexin-A 50μg/kg组和orexin-A 100μg/kg组(n=5),于缺血再灌注24 h后评估大鼠神经功能学评分和脑梗死容积。再取60只大鼠同样分成4组,(各组n=15),每组在术前、手术后6 h、24 h(各时间点n=5)取脑组织匀浆离心,检测上清液中谷胱甘肽过氧化物酶(GSH-PX)和丙二醛(MDA)的含量。结果:(1)大鼠MCAO术前、术后2 h、24 h生理参数比较无统计学意义(P0.05),提示脑保护参考指标在MCAO后24 h内不受影响。(2)与MCAO组、vehicle组相比,orexin-A 50和100μg/kg降低神经功能评分(P0.05)且梗死容积缩小(P0.05);术前、术后6 h和术后24 h,脑匀浆中GSH-PX活性升高,MDA含量降低(P0.05)。结论:Orexin-A可能通过降低脑内自由基水平,控制脂质过氧化物酶从而对脑缺血再灌注损伤起保护作用。  相似文献   

10.
目的:通过研究缺血预适应对小鼠脑缺血再灌注损伤血脑屏障通透性的影响,探讨缺血预适应的脑保护作用及相关分子机制。方法:取清洁健康成年小鼠72只,随机分为脑缺血预适应组(brain ischemic precondition,BIP),脑缺血再灌注组(middle cerebral artery occlusion and reperfusion,MCAO/R)和假手术组(sham group),每组均24只,采用zealonga线栓法栓塞小鼠大脑中动脉建立BIP模型和MCAO/R模型,通过氯化三苯基四氮唑(triphenyl tetrazolium chloride,TTC)染色计算脑梗死面积,改良神经功能缺损评分(modified neurological severity scores,m NSS)对脑缺血再灌注神经损伤程度进行评估,测干-湿重法以及伊文氏蓝(Evans blue,EB)示踪结合脑组织EB定量法评价血脑屏障(blood brain barrier,BBB)的损伤程度,采用免疫组化法检测各组脑组织低氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)的表达。结果:与MCAO组相比,BIP组显著降低缺血再灌注后m NSS评分,缩小了梗死面积并减轻脑水肿,有效的保护BBB功能,BIP组再灌注24 h时脑梗死灶周围皮质区HIF-1α及VEGF的表达均明显上调,差异有统计学意义(P0.05)。结论:BIP对小鼠脑缺血再灌注损伤模型BBB有一定的保护作用,其机制可能与其诱导HIF-1α及VEGF的表达上调有关。  相似文献   

11.
Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.  相似文献   

12.
Wang  Jingtao  Fu  Zhenqiang  Wang  Menghan  Lu  Jingjing  Yang  Hecheng  Lu  Hong 《Neurochemical research》2021,46(8):2167-2180
Neurochemical Research - Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and...  相似文献   

13.
To investigate the impacts and related mechanisms of penehyclidine hydrochloride (PHC) on ischemia/reperfusion (I/R)-induced myocardial injury. A rat model of myocardial I/R injury was established by the ligation of left anterior descending coronary artery for 30 min followed by 3 h perfusion. Before I/R, the rats were pretreated with or without PHC. Cardiac function was measured by echocardiography. The activities/levels of myocardial enzymes, oxidants and antioxidant enzymes were detected. Evans blue/TTC double staining was performed to assess infarct size. Cardiomyocyte apoptosis was evaluated by TUNEL assay. The release of inflammatory cytokines and inflammatory mediators was detected by ELISA. Western blot was performed to analyze the expression of COX-2, IκB, p-IκB and NF-κB. Meanwhile, the rats were given a single injection of H-PHC before I/R. The effects of PHC on myocardial infarct and cardiac function were investigated after 7 days post-reperfusion. We found that PHC remarkably improved cardiac function, alleviated myocardial injury by decreasing myocardial enzyme levels and attenuated oxidative stress in a dose-dependent manner. Additionally, PHC preconditioning significantly reduced infarct size and the apoptotic rate of cardiomyocytes. Administration of PHC significantly decreased serum TNF-α, IL-1β, IL-6 and PGE2 levels and myocardium COX-2 level. Meanwhile, the expression levels of p-IκB and NF-κB were downregulated, while IκB expression was upregulated. H-PHC also exerted long-term cardioprotection in a rat model of I/R injury by decreasing infarct size and improving cardiac function. These results suggest that PHC can efficiently protect the rats against I/R-induced myocardial injury.  相似文献   

14.
目的:探讨丹酚酸A对大鼠脑缺血/再灌注(cerebral ischemia/reperfusion,CI/R)损伤及抗氧化酶活性的影响。方法:采用大鼠脑中动脉闭塞(middle cerebral arteryocclusion,MCAO)2 h再灌注24 h模型。实验终末,检测脑梗死面积,脑水肿以及评价神经功能损伤,并进一步分析脑组织中三种抗氧化酶的活性水平。结果:与模型组相比,丹酚酸A组大鼠脑梗死面积显著减少(P0.05),水肿程度显著减轻(P0.05),神经功能学评分显著下降(P0.05)。模型组再灌注24 h后,SOD,GSH-PX及CAT活性显著下降(P0.05);丹酚酸A组SOD,GSH-PX及CAT活性则显著升高(P0.05)。结论:丹酚酸A对大鼠CI/R损伤具有保护作用,可能与CI/R损伤时的脑组织SOD,GSH-PX及CAT活性显著升高相关。  相似文献   

15.
目的:探讨丹酚酸A对大鼠脑缺血/再灌注(cerebral ischemia/reperfusion,CI/R)损伤及抗氧化酶活性的影响。方法:采用大鼠脑中动脉闭塞(middle cerebral arteryocclusion,MCAO)2 h再灌注24 h模型。实验终末,检测脑梗死面积,脑水肿以及评价神经功能损伤,并进一步分析脑组织中三种抗氧化酶的活性水平。结果:与模型组相比,丹酚酸A组大鼠脑梗死面积显著减少(P〈0.05),水肿程度显著减轻(P〈0.05),神经功能学评分显著下降(P〈0.05)。模型组再灌注24 h后,SOD,GSH-PX及CAT活性显著下降(P〈0.05);丹酚酸A组SOD,GSH-PX及CAT活性则显著升高(P〈0.05)。结论:丹酚酸A对大鼠CI/R损伤具有保护作用,可能与CI/R损伤时的脑组织SOD,GSH-PX及CAT活性显著升高相关。  相似文献   

16.
17.
K Ban  RA Kozar 《PloS one》2012,7(7):e41584
The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R)-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion.  相似文献   

18.
Shi  Yuanyuan  Han  Lijian  Zhang  Xianxian  Xie  Lili  Pan  Pinglei  Chen  Fei 《Neurochemical research》2022,47(10):2992-3002

To clarify the potential role of selenium (Se) on cerebral ischemia/reperfusion (I/R) injury, we utilized mouse middle cerebral artery occlusion (MCAO) followed by reperfusion as an animal model and oxygen–glucose deprivation and reoxygenation (OGD/R) to treat N2a cells as a cell model, respectively. MCAO model was established in mice and then divided into different groups with or without Se treatment. TTC staining was used to observe whether the cerebral I/R modeling was successful, and the apoptosis level was determined by TUNEL staining. The expression of GPx-4 and p22phox was assessed by western blot. In vitro experiments, the OGD/R induced oxidative stress in N2a cells was assessed by levels of GSH/GSSG, malondialdehyde, superoxide dismutase and iron content, respectively. QRT-PCR was used to detect the mRNA levels of Cox-2, Fth1, Mfn1 and mtDNA in N2a cells. JC-1 staining and flow cytometry was performed to detect the mitochondrial membrane potential. Se treatment alleviated cerebral I/R injury and improved the survival rate of mice. Additionally, Se treatment apparently attenuated oxidative stress and inhibited iron accumulation in MCAO model mice and OGD/R model of N2a cells. In terms of its mechanism, Se could up-regulate Mfn1 expression to alleviate oxidative stress and ferroptosis by promoting mitochondrial fusion in vivo and vitro. These findings suggest that Se may have great potential in alleviating cerebral I/R injury.

  相似文献   

19.
20.

Background

Transient global cerebral ischemia/reperfusion (I/R) is a major perioperative complication, and diabetes increases the response of oxidative stress and inflammation induced by I/R. The objective of this study was to determine the protective effect of dexmedetomidine against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats.

Methods

Sixty-four rats were assigned into four experimental groups: normoglycemia, normoglycemia + dexmedetomidine, hyperglycemia, and hyperglycemia + dexmedetomidine and all subsequent neurological examinations were evaluated by a blinded observer. Damage to the brain was histologically assessed using the TUNEL staining method while western blotting was used to investigate changes in the expression levels of apoptosis-related proteins as well as the microglia marker, ionized calcium-binding adapter molecule 1 (Iba1). Water content in the brain was also analyzed. In addition, hippocampal concentrations of malondialdehyde (MDA) and Nox2 (a member of the Nox family of NADPH oxidases), and the activity of superoxide dismutase and catalase were analyzed. Finally, changes in serum concentrations of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were detected.

Results

Results showed that diabetes increased brain water content, the number of apoptotic neurons, early neurological deficit scores, oxidative stress (MDA and Nox2) and inflammation (pro-inflammatory cytokines including TNF-α and IL-6) levels following transient global I/R injury, but that these symptoms were attenuated following administration of dexmedetomidine.

Conclusions

These findings suggest that dexmedetomidine can significantly alleviate damage resulting from I/R, and this mechanism may be related to a reduction in both oxidative stress and inflammation which is normally associated with I/R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号