首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2007,46(11):3193-3199
Tissue factor (TF) facilitates the recognition and rapid activation of factor X (fX) by factor VIIa (fVIIa) in the extrinsic Xase pathway. TF makes extensive interactions with both light and heavy chains of fVIIa; however, with the exception of a basic recognition site for the Gla domain of fX, no other interactive site on TF for the substrate has been identified. Structural and modeling data have predicted that a basic region of TF comprised of residues Asn-199, Arg-200, and Lys-201 is located at a proper height on the membrane surface to interact with either the C-terminus of the Gla domain or the EGF-1 domain of fX. To investigate this possibility, we prepared the Ala substitution mutants of these residues and evaluated their ability to function as cofactors for fVIIa in the activation of wild-type fX and its two mutants which lack either the Gla domain (GD-fX) or both the Gla and EGF-1 domains (E2-fX). All three TF mutants exhibited normal cofactor activity in the amidolytic activity assays, but the cofactor activity of Arg-200 and Lys-201 mutants in fVIIa activation of both fX and GD-fX, but not E2-fX, was impaired approximately 3-fold. Further kinetic analysis revealed that kcat values with both TF mutants are impaired with no change in Km. These results suggest that both Arg-200 and Lys-201 of TF interact with EGF-1 of fX to facilitate the optimal docking of the substrate into the catalytic groove of the protease in the activation complex.  相似文献   

2.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

3.
Factor VIIa (fVIIa) is composed of four discrete domains, a gamma-carboxyglutamic acid (Gla)-containing domain, two epidermal growth factor (EGF)-like domains, and a serine protease domain, all of which appear to be involved, to different extents, in an optimal interaction with tissue factor (TF). All except the second EGF-like domain contain at least one Ca2+ binding site and many properties of fVIIa, e.g., TF and phospholipid binding and amidolytic activity, are Ca(2+)-dependent. A CD study was performed to characterize and locate the conformational changes in fVIIa induced by Ca2+ and TF binding. In addition to intact fVIIa, derivatives lacking the Gla domain or the protease domain were used. Assignment of the Ca(2+)-induced changes in the far-UV region of the fVIIa spectrum to the Gla domain could be made by comparing the CD spectra obtained with these fVIIa derivatives. The changes primarily appeared to reflect a Ca(2+)-induced ordering of alpha-helices existing in the apo state of fVIIa. This was corroborated by models of the apo and Ca2+ forms of fVIIa, obtained as difference spectra between fVIIa derivatives, were very similar to those of isolated Gla peptides from other vitamin K-dependent plasma proteins. The near-UV CD spectrum of fVIIa was dominated by aromatic residues residing in the protease domain and specific bands affected by Ca2+ were indicative of tertiary structural alterations. The formation of a fVIIa:TF complex led to secondary structural changes that appeared to be restricted to the catalytic domain, possibly shedding light on the mechanism by which TF induces an enhancement of fVIIa catalytic activity.  相似文献   

4.
Norledge BV  Petrovan RJ  Ruf W  Olson AJ 《Proteins》2003,53(3):640-648
Factor X is activated to factor Xa (fXa) in the extrinsic coagulation pathway by the tissue factor (TF)/factor VIIa (fVIIa) complex. Upon activation, the fXa molecule remains associated with the TF/fVIIa complex, and this ternary complex is known to activate protease-activated receptors (PARs) 1 and 2. Activation of fVII in the TF complex by fXa is also seen at physiologic concentrations. The ternary complexes TF/fVII/fXa, TF/fVIIa/fX, and TF/fVIIa/fXa are therefore all physiologically relevant and of interest as targets for inhibition of both coagulation and cell-signaling pathways that are important in cardiovascular disease and inflammation. We therefore present a model of the TF/fVIIa/fXa complex, built with the use of the available structures of the TF/fVIIa complex and fXa by protein-protein docking calculations with the program Surfdock. The fXa model has an extended conformation, similar to that of fVIIa in the TF/fVIIa complex, with extensive interactions with TF and the protease domain of fVIIa. All four domains of fXa are involved in the interaction. The gamma-carboxyglutamate (Gla) and epithelial growth factor (EGF1 and EGF2) domains of fVIIa are not significantly involved in the interaction. Docking of the Gla domain of fXa to TF/fVIIa has been reported previously. The docking results identify potential interface residues, allowing rational selection of target residues for site-directed mutagenesis. This combination of docking and mutagenesis confirms that residues Glu51 and Asn57 in the EGF1 domain, Asp92 and Asp95 in the EGF2 domain, and Asp 185a, Lys 186, and Lys134 in the protease domain of factor Xa are involved in the interaction with TF/fVIIa. Other fX protease domain residues predicted to be involved in the interaction come from the 160s loop and the N-terminus of the fX protease domain, which is oriented in such a way that activation of both fVII by fXa, and the reciprocal fX activation by fVIIa, is possible.  相似文献   

5.
Proteolytic processing of zymogen Factor VII to Factor VIIa (FVIIa) is necessary but not sufficient for maximal proteolytic activity, which requires an additional allosteric influence induced upon binding to its cofactor tissue factor (TF). A key conformational change affecting the zymogenicity of FVIIa involves a unique three-residue shift in the position of beta-strand B2 in their zymogen and protease forms. By selectively introducing new disulfide bonds, we locked the conformation of these strands into an active TF*FVIIa-like state. FVIIa mutants designated 136:160, 137:159, 138:160, and 139:157, reflecting the position of the new disulfide bond (chymotypsinogen numbering), were expressed and purified by TF affinity chromatography. Mass spectrometric analysis of tryptic peptides from the FVIIa mutants confirmed the new disulfide bond formation. Kinetic analysis of amidolytic activity revealed that all FVIIa variants alone had increased specific activity compared to wild type, the largest being for variants 136:160 and 138:160 with substrate S-2765, having 670- and 330-fold increases, respectively. Notably, FVIIa disulfide-locked variants no longer required TF as a cofactor for maximal activity in amidolytic assays. In the presence of soluble TF, activity was enhanced 20- and 12-fold for variants 136:160 and 138:160, respectively, compared to wild type. With relipidated TF, mutants 136:160 and 137:159 also had an approximate threefold increase in their V(max)/K(m) values for FX activation but no significant improvement in TF-dependent clotting assays. Thus, while large rate enhancements were obtained for amidolytic substrates binding at the active site, macro-molecular substrates that bind to FVIIa exosites entail more complex catalytic requirements.  相似文献   

6.
The enzymatic activity of coagulation factor VIIa is controlled by its cellular cofactor tissue factor (TF). TF binds factor VIIa with high affinity and, in addition, participates in substrate interaction through its C-terminal fibronectin type III domain. We analyzed surface-exposed residues in the C-terminal TF domain to more fully determine the area on TF important for substrate activation. Soluble TF (sTF) mutants were expressed in E. coli, and their ability to support factor VIIa-dependent substrate activation was measured in the presence of phospholipid vesicles or SW-13 cell membranes. The results showed that factor IX and factor X interacted with the same TF region located proximal to the putative phospholipid surface. According to the degree of activity loss of the sTF mutants, this TF region can be divided into a main region (residues Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, Tyr185) forming a solvent-exposed patch of 488 A(2) and an extended region which comprises an additional 7-8 residues, including the distally positioned Asn199, Arg200, and Asp204. Some of the identified TF residues, such as Trp158 and those within the loop Lys159-Lys165, are near the factor VIIa gamma-carboxyglutamic acid (Gla) domain, suggesting that the factor VIIa Gla-domain may also participate in substrate interaction. Moreover, the surface identified as important for substrate interaction carries a net positive charge, suggesting that charge interactions may significantly contribute to TF-substrate binding. The calculated surface-exposed area of this substrate interaction region is about 1100 A(2), which is approximately half the size of the TF area that is in contact with factor VIIa. Therefore, a substantial portion of the TF surface (3000 A(2)) is engaged in protein-protein interactions during substrate catalysis.  相似文献   

7.
Serine protease activation is typically controlled by proteolytic cleavage of the scissile bond, resulting in spontaneous formation of the activating Ile(16)-Asp(194) salt bridge. The initiating coagulation protease factor VIIa (VIIa) differs by remaining in a zymogen-like conformation that confers the control of catalytic activity to the obligatory cofactor and receptor tissue factor (TF). This study demonstrates that the unusual hydrophobic Met(156) residue contributes to the propensity of the VIIa protease domain to remain in a zymogen-like conformation. Mutation of Met(156) to Gln, which is found in the same position of the highly homologous factor IX, had no influence on the amidolytic and proteolytic activity of TF-bound VIIa. Furthermore, the mutation did not appreciably stabilize the labile Ile(16)-Asp(194) salt bridge in the absence of cofactor. VIIa(Gln156) had increased affinity for TF, consistent with a long range conformational effect that stabilized the cofactor binding site in the VIIa protease domain. Notably, in the absence of cofactor, amidolytic and proteolytic function of VIIa(Gln156) were enhanced 3- and 9-fold, respectively, compared with wild-type VIIa. The mutation thus selectively influenced the catalytic activity of free VIIa, identifying the Met(156) residue position as a determinant for the zymogen-like properties of free VIIa.  相似文献   

8.
Evidence for activation of tissue factor by an allosteric disulfide bond   总被引:12,自引:0,他引:12  
Chen VM  Ahamed J  Versteeg HH  Berndt MC  Ruf W  Hogg PJ 《Biochemistry》2006,45(39):12020-12028
Tissue Factor (TF) is the mammalian plasma membrane cofactor responsible for initiation of blood coagulation. Binding of blood coagulation factor VIIa to TF activates the serine proteinase zymogens factors IX and X by limited proteolysis leading to the formation of a thrombin and fibrin meshwork that stabilizes the thrombus. TF on the plasma membrane of cells resides mostly in a cryptic configuration, which rapidly transforms into an active configuration in response to certain stimuli. The extracellular part of TF consists of two fibronectin type III domains. The disulfide bond in the membrane proximal domain (Cys186-Cys209) is atypical for domains of this type in that it links adjacent strands in the same beta sheet, what we have called an allosteric bond. Ablation of the allosteric disulfide by mutating both cysteine residues severely impairs procoagulant activity. The thiol-alkylating agents N-ethylmaleimide and methyl methanethiolsulfonate block TF activation by ionomycin, while the thiol-oxidizing agent HgCl2 and dithiol cross-linkers promote activation. TF activation could not be explained by exposure of phosphatidylserine on the outer leaflet of the plasma membrane. Cryptic TF contained unpaired cysteine thiols that were depleted upon activation, and de-encryption was associated with a change in the conformation of the membrane-proximal domain. These findings imply that the Cys186-Cys209 disulfide bond is reduced in the cryptic form of TF and that activation involves formation of the disulfide. It is likely that formation of this disulfide bond changes the conformation of the domain that facilitates productive binding of factors IX and X.  相似文献   

9.
Blood coagulation is triggered when the serine protease factor VIIa (fVIIa) binds to cell surface tissue factor (TF) to form the active enzyme-cofactor complex. TF binding to fVIIa allosterically augments the enzymatic activity of fVIIa toward macromolecular substrates and small peptidyl substrates. The mechanism of this enhancement remains unclear. Our previous studies have indicated that soluble TF (sTF; residues 1-219) alters the pH dependence of fVIIa amidolytic activity (Neuenschwander et al. (1993) Thromb. Haemostasis 70, 970), indicating an effect of TF on critical ionizations within the fVIIa active center. The pKa values and identities of these ionizable groups are unknown. To gain additional insight into this effect, we have performed a detailed study of the pH dependence of fVIIa amidolytic activity. Kinetic constants of Chromozym t-PA (MeSO(2)-D-Phe-Gly-Arg-pNA) hydrolysis at various pH values were determined for fVIIa alone and in complex with sTF. The pH dependence of both enzymes was adequately represented using a diprotic model. For fVIIa alone, two ionizations were observed in the free enzyme (pK(E1) = 7.46 and pK(E2) = 8.67), with at least a single ionization apparent in the Michaelis complex (pK(ES1) similar 7.62). For the fVIIa-TF complex, the pK(a) of one of the two important ionizations in the free enzyme was shifted to a more basic value (pK(E1) = 7.57 and pK(E2) = 9.27), and the ionization in the Michaelis complex was possibly shifted to a more acidic pH (pK(ES1) = 6.93). When these results are compared to those obtained for other well-studied serine proteases, K(E1) and K(ES1) are presumed to represent the ionization of the overall catalytic triad in the absence and presence of substrate, respectively, while K(E2) is presumed to represent ionization of the alpha-amino group of Ile(153). Taken together, these results would suggest that sTF binding to fVIIa alters the chemical environment of the fVIIa active site by protecting Ile(153) from deprotonation in the free enzyme while deprotecting the catalytic triad as a whole when in the Michaelis complex.  相似文献   

10.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

11.
The cell surface receptor tissue factor (TF) initiates coagulation by supporting the proteolytic activation of factors X and IX as well as VII to active serine proteases. Architectural similarity of TF to the cytokine receptor family suggests a strand-loop-strand structure for TF residues 151-174. Site-directed Ala exchanges in the predicted surface loop demonstrated that residues Tyr157, Lys159, Ser163, Gly164, Lys165, and Lys166 are important for function. Addition of side chain atoms at the Ser162 position decreased function, whereas the Ala exchange was tolerated. The dysfunctional mutants bound VII with high affinity and fully supported the catalysis of small peptidyl substrates by the mutant TF.VIIa complex. Lys159-->Ala substitution was compatible with efficient activation of factor X, whereas the Try157-->Ala exchange and mutations in the carboxyl aspect of the predicted loop resulted in diminished activation of factor X. The specific plasma procoagulant activity of all functionally deficient mutants increased 7- to 200-fold upon the supplementation of VIIa suggesting that TF residues 157-167 also provide important interactions that accelerate the activation of VII to VIIa. These data are consistent with assignment of the TF 157-167 region as contributing to protein substrate recognition and cleavage by the TF.VIIa complex.  相似文献   

12.
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 ? (1 ?=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.  相似文献   

13.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

14.
T H Bestor 《The EMBO journal》1992,11(7):2611-2617
Mammalian DNA (cytosine-5) methyltransferase contains a C-terminal domain that is closely related to bacterial cytosine-5 restriction methyltransferase. This methyltransferase domain is linked to a large N-terminal domain. It is shown here that the N-terminal domain contains a Zn binding site and that the N- and C-terminal domains can be separated by cleavage with trypsin or Staphylococcus aureus protease V8; the protease V8 cleavage site was determined by Edman degradation to lie 10 residues C-terminal of the run of alternating lysyl and glycyl residues which joins the two domains and six residues N-terminal of the first sequence motif conserved between the mammalian and bacterial cytosine methyltransferases. While the intact enzyme had little activity on unmethylated DNA substrates, cleavage between the domains caused a large stimulation of the initial velocity of methylation of unmethylated DNA without substantial change in the rate of methylation of hemimethylated DNA. These findings indicate that the N-terminal domain of DNA methyltransferase ensures the clonal propagation of methylation patterns through inhibition of the de novo activity of the C-terminal domain. Mammalian DNA methyltransferase is likely to have arisen via fusion of a prokaryotic-like restriction methyltransferase and an unrelated DNA binding protein. Stimulation of the de novo activity of DNA methyltransferase by proteolytic cleavage in vivo may contribute to the process of ectopic methylation observed in the DNA of aging animals, tumors and in lines of cultured cells.  相似文献   

15.
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) contains at least two domains associated with multiple enzymatic activities; a serine protease activity resides in the N-terminal one-third of the protein, whereas RNA helicase activity and RNA-stimulated nucleoside triphosphatase activity are associated with the C-terminal portion. To study the possible mutual influence of these enzymatic activities, a full-length NS3 polypeptide of 67 kDa was expressed as a nonfusion protein in Escherichia coli, purified to homogeneity, and shown to retain all three enzymatic activities. The protease activity of the full-length NS3 was strongly dependent on the activation by a synthetic peptide spanning the central hydrophobic core of the NS4A cofactor. Once complexed with the NS4A-derived peptide, the full-length NS3 protein and the isolated N-terminal protease domain cleaved synthetic peptide substrates with comparable efficiency. We show that, as in the case of the isolated protease domain, the protease activity of full-length NS3 undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B and NS5A-NS5B. We have also characterized and quantified the NS3 ATPase, RNA helicase, and RNA-binding activities under optimized reaction conditions. Compared with the isolated N-terminal and C-terminal domains, recombinant full-length NS3 did not show significant differences in the three enzymatic activities analyzed in independent in vitro assays. We have further explored the possible interdependence of the NS3 N-terminal and C-terminal domains by analyzing the effect of polynucleotides on the modulation of all NS3 enzymatic functions. Our results demonstrated that the observed inhibition of the NS3 proteolytic activity by single-stranded RNA is mediated by direct interaction with the protease domain rather than with the helicase RNA-binding domain.  相似文献   

16.
The cytoplasmic C-terminal domain, residues 348-637, and the membrane-bound N-terminal domain, residues 1-347, of EIImtl have been subcloned and expressed in Escherichia coli. The N-terminal domain, IICmtl, contains the mannitol binding site, and the C-terminal domain, IIBAmtl, contains the activity-linked phosphorylation sites, His-554 and Cys-384. Overexpression of the BA domain was achieved by a translational in-frame fusion of the gene with the cro ATG start codon, downstream of the strong PR promoter of phage lambda. The domain has been purified and characterized in in vitro complementation assays. It possessed no mannitol phosphorylation activity itself but was able to restore the phosphoenolpyruvate-dependent phosphorylation activity of two EIImtl phosphorylation site mutants, lacking His-554 or Cys-384. The complementary N-terminal domain was also expressed. Membranes possessing IICmtl were unable to phosphorylate mannitol at the expense of phosphoenolpyruvate. However, when the membranes were combined with the purified C-terminal domain, mannitol phosphorylation activity was restored. Mannitol transport and phosphorylation were also restored in vivo when the two plasmids encoding the N- and C-terminal domains were expressed in the same cell. These data demonstrate the existence of structurally and functionally distinct domains in EIImtl: a cytoplasmic domain with phosphorylating activity and a membrane-bound N-terminal domain which, in the presence of the cytoplasmic domain, is able to actively transport and phosphorylate mannitol. The ability to separate, overproduce, and purify structurally stable, enzymatically active domains opens the way for 3D structural studies as well as complete kinetic analysis of the activities of the individual domains and their interactions.  相似文献   

17.
MnmC catalyses the last two steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA. Previously, we reported that this bifunctional enzyme is encoded by the yfcK open reading frame in the Escherichia coli K12 genome. However, the mechanism of its activity, in particular the potential structural and functional dependence of the domains responsible for catalyzing the two modification reactions, remains unknown. With the aid of the protein fold-recognition method, we constructed a structural model of MnmC in complex with the ligands and target nucleosides and studied the role of individual amino acids and entire domains by site-directed and deletion mutagenesis, respectively. We found out that the N-terminal domain contains residues responsible for binding of the S-adenosylmethionine cofactor and catalyzing the methylation of nm(5)s(2)U to form mnm(5)s(2)U, while the C-terminal domain contains residues responsible for binding of the FAD cofactor. Further, point mutants with compromised activity of either domain can complement each other to restore a fully functional enzyme. Thus, in the conserved fusion protein MnmC, the individual domains retain independence as enzymes. Interestingly, the N-terminal domain is capable of independent folding, while the isolated C-terminal domain is incapable of folding on its own, a situation similar to the one reported recently for the rRNA modification enzyme RsmC.  相似文献   

18.
Coagulation factor IX contains a gamma-carboxyglutamic acid (Gla) module, two epidermal growth factor-like (EGF) modules, and a serine protease region. We have characterized a mouse monoclonal antibody that binds the N-terminal EGF-like module of human factor IX with high affinity. Studies of recombinant factor IX mutants indicated that the epitope is located in the C-terminal end of the EGF-like module, which is consistent with the binding being non-Ca(2+)-dependent. The antibody bound factor IXa (K(D) = 7.6 x 10(-10) M) with about 10-fold higher affinity than factor IX (K(D) = 6.2 x 10(-9) M). Binding of the antibody to factor IXa did not affect the amidolytic activity of the protein, nor was binding affected by active site inhibition of factor IXa. These results are consistent with long-range interactions between the serine protease region and the N-terminal EGF-like module in factor IX.  相似文献   

19.
Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.  相似文献   

20.
The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号