首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the biological activities of coral-prostanoids, clavulones, discovered from the Japanese stolonifer Clavularia viridis, we examined the effect of clavulone on the cell growth of human cancer (human promyelocytic leukemia (HL-60) cells and HeLa cells) and normal (Chang liver cells and lung fibroblasts) cells in vitro. Clavulone showed strong antiproliferative and cytotoxic activities in the human cells and it had some selectivity to leukemic (HL-60) cells over other HeLa cells or normal cells on the basis of the IC50 values and cytotoxic effect of the cells. The IC50 value of clavulone in the HL-60 cells was about 0.4 microM (0.2 micrograms/ml). Over 1.0 microM (0.5 micrograms/ml), clavulone showed a significant cytotoxic activity on the HL-60 cells. The data on DNA synthesis and flow cytometric analysis revealed that clavulone arrests the cells in the G1-phase and inhibits the cell growth of HL-60 cells by inhibiting S-phase DNA synthesis. These results suggest that clavulone has a potent antileukemic effect on HL-60 cells.  相似文献   

2.
Application of hypothermia to autologous stem cell purging   总被引:5,自引:0,他引:5  
Autologous stem cell transplantation is used widely after high-dose chemotherapy for treating hematological and other malignancies. Bone marrow harvested for autologous bone marrow transplantation may contain residual malignant cells even when the cancer is judged to be in remission. Attempts to purge marrow of its putative residual malignant cells may delay hemopoietic reconstitution and are of uncertain efficacy. In this report, we demonstrate the possibility of applying hypothermia to autologous stem cell purging. Using clonogenic assay, we compared the surviving fraction of human leukemia (HL60, K562) and human small cell lung cancer (H69) cell lines with that of normal human bone marrow CFU-GM and BFU-E cells after incubation at 4 +/- 0.1 degrees C for 24 and 48 h. Hypothermia decreased the surviving fraction of HL60, H69, and K562 cells. In contrast, the surviving fractions of stem cells were not affected by the temperature shift. The surviving fraction of HL60 cells at 4 degrees C cooling was significantly lower than that at 22 degrees C cooling. These findings suggest that in vitro hypothermia may selectively purge residual malignant cells in stored remission bone marrow and may be applicable before autologous bone marrow transplantation. In addition, the method is very simple and cost effective.  相似文献   

3.
The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells.  相似文献   

4.
Alkyl-lysophospholipids (ALPs) are reported to have an antineoplastic activity against leukaemic cells. We have tested some halogen-containing ALPs from the Central Institute of Molecular Biology (H. Brachwitz) in comparison with racemic 1-ostadecyl-2-methyl-glycero-3-phosphocholine (ET-18-OCH3) (P.G. Munder, Max-Planck-Institut für Immunobiologie, Freiburg, FRG). We found freshly dissolved ALPs to be very toxic both to human bone marrow and to leukaemic cells of patients. ALP-incubation before cryopreservation is more toxic to bone marrow (but not to AML blasts) than after cryopreservation. All experiments to test the selectivity and to establish a purging protocol should be done using 1, remission marrow including a cryopreservation step and 2, blasts of de novo leukaemias instead of cell as sensitive as HL 60 to ALP-incubation. We found direct toxicity of ALPs to be not suitable for purging lines of bone marrow from patients in remission.  相似文献   

5.
Treatment of human promyelocytic leukemia cells (HL-60 cells) with 12-O-tetradecanoylphorbol 13-acetate (TPA) results in terminal differentiation of the cells to macrophage-like cells. Treatment of the cells with TPA induced marked enhancement of the phosphorylation of 28- and 67-kDa proteins and a decrease in that of a 75-kDa protein. When the cells were treated with diacylglycerol, i.e. 50 micrograms/ml 1-oleoyl-2-acetylglycerol (OAG), similar changes in the phosphorylation of 28-, 67-, and 75-kDa proteins were likewise observed, indicating that OAG actually stimulates protein kinase C in intact HL-60 cells. OAG (1-100 micrograms/ml), which we used, activated partially purified mouse brain protein kinase C in a concentration-dependent manner. Treatment of HL-60 cells with 10 nM TPA for 48 h caused an increase by about 8-fold in cellular acid phosphatase activity. Although a significant increase in acid phosphatase activity was induced by OAG, the effect was scant compared to that of TPA (less than 7% that of TPA). After 48-h exposure to 10 nM TPA, about 95% of the HL-60 cells adhered to culture dishes. On the contrary, treatment of the cells either with OAG (2-100 micrograms/ml) or phospholipase C failed to induce HL-60 cell adhesion. Ca2+ ionophore A23187 failed to act synergistically with OAG. In addition, hourly or bi-hourly cumulative addition of OAG for 24 h also proved ineffective to induce HL-60 cell adhesion. Our present results do not imply that protein kinase C activation is nonessential for TPA-induced HL-60 cell differentiation, but do demonstrate that protein kinase C activation is not the sole event sufficient to induce HL-60 cell differentiation by means of this agent.  相似文献   

6.
D B Luckie  K L Boyd  K Takeyasu 《FEBS letters》1991,290(1-2):231-234
HL-60 cells are very sensitive to the cytotoxic action of ether lipids. Several hypotheses have been proposed to explain this cytotoxicity. We investigated the influence of the alkylphospholipid ET-18-OCH3 on the activity of protein kinase C. HL-60 cells were incubated with ET-18-OCH3 at a concentration of 20 μg/ml for 4 h. After the incubation the membrane fraction of the HL-60 cells was isolated and the activity of protein kinase C was determined while it was still associated with the membrane, using the synthetic peptide substrate [Ser25]-protein kinase C (19–31) as a protein kinase C specific substrate. The activity of the membrane-bound protein kinase C was increased in HL-60 cells treated with ET-18-OCH3 compared to untreated HL-60 cells. The increase in protein kinase C activity was not a consequence of translocation and appeared to be additive to the effect of the phorbol ester 12-myristate 13-acetate. In contrast, solubilized protein kinase C from HL-60 cells could be inhibited or stimulated in vitro by ET-18-OCH3, dependent on the mode of addition of ET-18-OCH3 and phospholipids.  相似文献   

7.
Laser light-induced, dye-mediated photolysis of leukemic cells was tested in an in vitro model for its efficacy in eliminating occult tumor cells for ex vivo autologous bone marrow purging. Merocyanine 540 (MC540) was mixed with acute promyelocytic leukemia (HL-60) cells in the presence of human albumin. This cell-dye mixture was irradiated with 514 nm argon laser light. Results show that in the presence of 0.1%, 0.25% and 0.5% albumin, laser light doses of 62.4 J/cm2, 93.6 J/cm2 and 109.2 J/cm2, respectively, were required for a 5 log reduction in the survival of leukemic cells. Under identical conditions, 80% to 84% of the normal bone marrow cells and 41% of the granulocyte-macrophage colony forming cells survived. The number of surviving stromal cells was reduced (1+) compared to the untreated control (4+). Mixing of irradiated bone marrow cells with equal number of HL-60 cells did not interfere with the killing of HL-60 cells treated with MC540 and laser light. The non-specific cytotoxicity of laser light alone was less than 6% for normal bone marrow cells. These results suggest that the concentration of human albumin plays an important role in laser light-induced phototoxicity. This laser light-induced selective photolysis of leukemic cells can be used in ex vivo purging of tumor cell-contaminated bone marrow grafts to achieve very high survival rates of normal bone marrow cells and granulocyte-macrophage colony forming cells.  相似文献   

8.
HL-60 cells are very sensitive to the cytotoxic action of ether lipids. Several hypotheses have been proposed to explain this cytotoxicity. We investigated the influence of the alkylphospholipid ET-18-OCH3 on the activity of protein kinase C. HL-60 cells were incubated with ET-18-OCH3 at a concentration of 20 μg/ml for 4 h. After the incubation the membrane fraction of the HL-60 cells was isolated and the activity of protein kinase C was determined while it was still associated with the membrane, using the synthetic peptide substrate [Ser25]-protein kinase C (19–31) as a protein kinase C specific substrate. The activity of the membrane-bound protein kinase C was increased in HL-60 cells treated with ET-18-OCH3 compared to untreated HL-60 cells. The increase in protein kinase C activity was not a consequence of translocation and appeared to be additive to the effect of the phorbol ester 12-myristate 13-acetate. In contrast, solubilized protein kinase C from HL-60 cells could be inhibited or stimulated in vitro by ET-18-OCH3, dependent on the mode of addition of ET-18-OCH3 and phospholipids.  相似文献   

9.
Natural dimer of bovine seminal ribonuclease (AS RNase) suppressed markedly DNA synthesis in allogeneic mixed lymphocyte culture (MLC) of normal human lymphocytes and simultaneously inhibited induction of cytotoxic effector cells within the sensitization phase of indirect cell-mediated lympholysis (CML) reaction. The last purification step of the AS RNase isolation procedure did not increase the suppressive activity of AS RNase compared to a less purified preparation (ZS RNase), thus, the later preparation was mostly used. ZS RNase (10 micrograms/ml) caused 50% inhibition of MLC reaction whereas pancreatic ribonuclease (A RNase) was 10 times less effective. The suppressive effect of RNases added in the beginning of the sensitization phase of the CML reaction correlated with that observed in the MLC reaction. The concentrations of ZS RNase (10 micrograms/ml), A RNase (100 micrograms/ml), and additionally tested cyclosporin A (0.5 microgram/ml) resulted in nearly total abrogation of cytolysis in CML. ZS RNase added after the sensitization of effector cells did not influence their cytolytic action on target cells within the destruction phase of CML. Natural killer and killer cell activities in normal peripheral lymphocytes were not inhibited by ZS RNase at the concentration of 330 micrograms/ml. ZS RNase (20 micrograms/ml), cocultivated 1 h with normal human bone marrow cells and then washed off, enhanced formation of GM-CFC colonies in semisolid agar culture up to 200%. Simultaneously tested antilymphocyte globulin increased the number of GM-CFC colonies at the average of 128%. This stimulating effect on colony formation appeared also in bone marrow culture of patients suffering with various hematological disorders. The possibility of utilizing the preparations gained from seminal plasma in clinical bone marrow transplantation is discussed.  相似文献   

10.
To explore a new agent for inhibiting leukemic cells, we investigated the effects of rare earth compounds (lanthanum chloride and cerium chloride) on the growth and apoptosis of HL-60 and NB4 cells. The growth of HL-60 and NB4 cells was tested by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) colorimetric assay. The apoptosis was measured by light microscopy, flow cytometry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) method. The effect of LaCl(3) on normal bone marrow hematopoietic progenitor cells was evaluated by colony-forming unit-granulocyte-macrophage (CFU-GM) assay. Under our experimental conditions, MTT assay showed that 48-h treatment with 1, 2, and 3 mM LaCl(3) or 48- and 72-h treatments with 1 mM LaCl(3) could significantly inhibit the growth of HL-60 cells. Treatment with 2 and 4 mM CeCl(3) for 72 h could significantly inhibit the growth of NB4 cells. Apoptosis could be detected on treatment with 2 mM LaCl(3) for 24 h in HL-60 cells by light microscopic morphology examination, flow cytometric analysis, and TUNEL method. Apoptosis could be also detected on treatment with 2 mM CeCl(3) for 72 h in NB4 cells. Treatment with 1 mM LaCl(3) could arrest the transitions from G0/G1 to S phase. The granulocyte-macrophage colony formation of normal bone marrow cells was not significantly inhibited at lower concentrations of LaCl(3) (0.5 to 2 mM). Our results indicate that at certain concentrations, the rare earth compounds may inhibit the growth of leukemic cells, induce them to apoptosis, and have no significant inhibitory effects on normal bone marrow hematopoietic progenitor cells (CFU-GM). The mechanism needs to be further investigated.  相似文献   

11.
The effect of serum from 32 AML patients on the normal human myeloid differentiation and the hexamethylene-bisacetamide induced granulocytic differentiation of HL-60 promyelocytic leukaemic cell line was studied. Nonadherent normal mononuclear marrow cells were cultured in vitro at a concentration of 5 x 10(5) cells/ml for 6 days with each of the 32 AML sera. Ten normal human AB sera were used as control. The results showed an inhibitory activity on both morphological and functional differentiation of normal human myeloid immature marrow cells by 29 out of the 32 AML sera tested. These 29 AML sera were added to cultures of HL-60 (2.5 x 10(5)/ml) leukaemia cell line which incorporated 2 mM hexamethylene-bisacetamide for 6 days. The results showed no significant inhibition of hexamethylene-bisacetamide induced granulocytic differentiation by any of the 29 AML sera. The efficacy of hexamethylene-bisacetamide in inducing differentiation in the presence of inhibitory factors suggests a possible role in the treatment of AML patients.  相似文献   

12.
The proliferative response of human T lymphocytes to autologous bone marrow progenitor cells was studied by in vitro coculture in autologous serum. Irradiated enriched bone marrow progenitor cells induced the proliferation of cocultured peripheral blood T cells, with maximal proliferation at 8 days and stimulator:proliferator ratios of 1/1. This autologous proliferative T lymphocyte response was completely abrogated by the inclusion of anti-HLA-DR, anti-CD2, or anti LFA-3 antibodies into the coculture, and partially inhibited by anti-CD4. Repetitive stimulation with autologous progenitors at days 14 and 28 expanded and further enriched the autoreactive T cells, which proliferated specifically in the presence of autologous progenitors. When incubated for 12 h with bone marrow before short term hematopoietic culture, these autoreactive T cells inhibited hematopoiesis 60 to 100%. These data indicate that a subset of T lymphocytes recognize proliferating hematopoietic progenitors and regulate the growth and differentiation of normal bone marrow cells.  相似文献   

13.
Thrombin, a major procoagulant enzyme and growth factor, is also selectively chemotactic for monocytes and macrophages but not for neutrophils. This effect stands in contrast to other well-known chemotactic agents such as fMet-Leu-Phe, C5a fragments, and LTB4, which stimulate directed cell movement in both cell types, and have important physiological implications. The human leukemic cell line HL-60, which is capable of differentiating either along granulocytic or monocytic lineages, was therefore used to explore the development of this selective monocyte/macrophage chemotactic response to thrombin. Esterolytically inactive DIP-alpha-thrombin, as well as the thrombin-derived chemotactic peptide CB67-129, elicits a dose-dependent chemotactic response in HL-60 cells differentiated to monocytelike cells by treatment with 1,25(OH)2D3 (HL-60/mono), whereas no such response is evident in either undifferentiated HL-60 cells or in cells differentiated into granulocytes by treatment with DMSO (HL-60/gran). Similarly, early events which characterize stimulation of inflammatory cells by chemotactic agents are also evident, but only in monocyte-differentiated cells. In HL-60/mono, thrombin selectively stimulates rapid cytosolic Ca2+ elevation as well as rapid cytoskeletal association of cytosolic actin. Following thrombin stimulation, maximal actin association in these cells occurs within 30 sec (declining to basal levels at the end of 5 min), and maximal Ca2+ elevations are also evident within 15-20 sec, suggesting a temporal relationship between these two events. Thus, the events accompanying stimulation of HL-60/mono by thrombin are characteristic of those seen following stimulation of inflammatory cells by chemotaxins, with a major difference being the selectivity of thrombin as a chemotaxin for cells of macrophage/monocytic lineage. The selective chemotactic responsiveness of HL-60/mono to thrombin appears to relate to the development of specific receptors on these cells as part of monocytic differentiation: HL-60/mono (but HL-60/gran nor undifferentiated HL-60) are capable of significant specific 125-I-labeled alpha-thrombin-binding (ka approximately 20 nM), and possess an estimated 400,000 thrombin-binding sites per cell. Our findings further suggest that the thrombin response of HL-60 and particularly the expression of thrombin receptors on these cells may serve as a useful model system for exploring the biology of monocyte/macrophage differentiation.  相似文献   

14.
The influence of dimethyl sulphoxide (I), penicillin/streptomycin (II), gentamicin (III), and amphotericin B (IV) on growing human T-lymphoma cells was measured by microcalorimetry. There was a dose-dependent decrease in the heat production rate of the cells after 24 h of incubation with I in concentrations ranging from 0-2% (v/v). At 3.6%, about half of the cells died. II and III had no effect on the cells after incubation for 6 days, at concentrations from 1 to 10 times that of the normal (50-500 IU/ml; 50-500 micrograms/ml). IV was used in combination with II (50 IU/ml; 50 micrograms/ml) and III (50 micrograms/ml), respectively, at concentrations between 0.25 and 7.5 micrograms/ml. After 6 days of incubation, the results were similar to those obtained with II and III separately.  相似文献   

15.
P D Dass  F E Murdoch  M C Wu 《In vitro》1984,20(11):869-875
Several studies indicate that glutamine is a critical requirement for growth of cultured cells. The present studies describe the effect of deprivation of glucose or glutamine on mouse bone marrow cell or HL-60 cell colony formation in soft agar. The mouse bone marrow cells were induced to undergo granulocyte/macrophage type differentiation by colony-stimulating factor. Glutamine, but not glucose, was found to be an indispensable metabolite for the cloning of HL-60 cells or differentiated mouse bone marrow cells. In addition, the effect of glucose or glutamine on the rate of differentiation of dimethylsulfoxide (DMSO)-induced HL-60 cells in liquid culture was studied. Glutamine was found to be superior to glucose in its ability to support the proliferation and myeloid differentiation of HL-60 cells. When an optimal concentration of DMSO was used, the rate of differentiation of induced HL-60 cells was found to be a function of the concentration of glutamine. In addition to these studies glutamine utilization and product formation was studied in induced and uninduced HL-60 cells after 60 min incubation with 1 mM initial glutamine concentration. The fractional distribution of the glutamine carbon into its metabolic products remained unchanged in induced versus uninduced HL-60 cells. However, the rate of utilization of glutamine and product formation by terminally differentiated HL-60 cells was less than the rate of utilization of glutamine by undifferentiated HL-60 cells. The data do not explain the role of glutamine in the complex process of differentiation but establish the critical requirements for glutamine, but not glucose, in myelopoiesis.  相似文献   

16.
Photodynamic therapy represents a new approach for the local control of cancers. It has recently been claimed that photodynamic therapy mediated by hematoporphyrin derivative (HPD) is selectively more efficient for killing leukemic cells than normal progenitors. To improve this effect, we studied the influence of hematoporphyrin dose, temperature during incubation and/or treatment, hematoporphyrin derivative incubation time, and fractionation of the argon laser light (488-514 nm) used for hematoporphyrin stimulation. Plating efficiency calculated after a 7-day period of growth on collagen gel medium showed a dose-dependent phototoxicity of HPD reaching 0.01% for normal hemopoietic progenitors and 0.001% for leukemic cells (dose = 12.5 micrograms/ml). The 10:1 ratio of normal hemopoietic progenitors to leukemic cells was also found to be the same or increased when temperature was 37 degrees C during incubation and 4 degrees C during laser irradiation. Similar results were also found when incubation time was varied from 75-120 min, or when laser irradiation dose was fractionated into 2 or 3 periods. The ratio of normal progenitors to leukemic cells reached 100:1 when 75 J/cm2 were fractionated into 3 periods after an incubation time of 120 min with 10 micrograms/ml HPD. Selectivity in photodynamic treatment seems to occur between normal hemopoietic progenitors and leukemic cells. The mechanism of this selectivity remains unclear, but experiments with the fractionated irradiation dose suggest that as in radiotherapy, better potentially lethal damage repair in normal cells could be a factor for selectivity in photodynamic therapy. Our results obtained with leukemic cells are fully in agreement with data in the literature concerning similar experimental models.  相似文献   

17.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

18.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

19.
Differentiation of myeloid cells is associated with the gradual acquisition of functional capacity to produce a respiratory burst. In our study HL-60 cells were differentiated to the monocyte phenotype with IFN-gamma or 1,25-dihydroxyvitamin D3, or to the neutrophil phenotype with retinoic acid or DMSO to compare the time-course of expression of membrane and cytosolic oxidase components, and to correlate this with the appearance of a functional oxidase. Over a 6-day period of induction the rank order of the ability of these agents to induce expression of PMA-stimulated superoxide production was: IFN-gamma greater than 1,25(OH)2D3 greater than retinoic acid greater than DMSO. Immunoblot analysis of HL-60 membranes and cytosol was used to assess the amount of specific phagocyte oxidase factors (91 and 22 kDa subunits of membrane cytochrome b558 (gp91 and p22), and 47 and 67 kDa cytosol oxidase factors (p47 and p67)). HL-60 cell membranes or cytosol were tested in a cell-free assay of superoxide production by mixing with normal neutrophil cytosol or membranes, respectively. p47 was first detected at 16 h of differentiation, increasing similarly thereafter with all induction regimens and reaching a maximum by 3 to 4 days. The earliest detection of p67 varied from 2 to 6 days depending on the inducing agent and appeared to be the limiting cytosol component. Small amounts of both subunits of cytochrome b558 were detected in uninduced HL-60 membranes, but were sufficient to support substantial superoxide production when combined with normal neutrophil cytosol. Both cytochrome b558 subunit proteins and membrane oxidase activity increased during differentiation in parallel. We conclude that membrane and cytosol components of the NADPH oxidase complex appear at different times and increase differently during HL-60 differentiation. The production of p67 is the major factor limiting the respiratory burst during HL-60 differentiation.  相似文献   

20.
Summary Several studies indicate that glutamine is a critical requirement for growth of cultured cells. The present studies describe the effect of deprivation of glucose or glutamine on mouse bone marrow cell or HL-60 cell colony formation in soft agar. The mouse bone marrow cells were induced to undergo granulocyte/macrophage type differentiation by colony-stimulating factor. Glutamine, but not glucose, was found to be an indispensable metabolite for the cloning of HL-60 cells or differentiated mouse bone marrow cells. In addition, the effect of glucose or glutamine on the rate of differentiation of dimethylsulfoxide (DMSO)-induced HL-60 cells in liquid culture was studied. Glutamine was found to be superior to glucose in its ability to support the proliferation and myeloid differentiation of HL-60 cells. When an optimal concentration of DMSO was used, the rate of differentiation of induced HL-60 cells was found to be a function of the concentration of glutamine. In addition to these studies glutamine utilization and product formation was studied in induced and uninduced HL-60 cells after 60 min incubation with 1 mM initial glutamine concentration. The fractional distribution of the glutamine carbon into its metabolic products remained unchanged in induced versus uninduced HL-60 cells. However, the rate of utilization of glutamine and product formation by terminally differentiated HL-60 cells was less than the rate of utilization of glutamine by undifferentiated HL-60 cells. The data do not explain the role of glutamine in the complex process of differentiation but establish the critical requirements for glutamine, but not glucose, in myelopoiesis. This work has been supported by USPHS Grants AM 31624 and CA 00859 and a Faculty Research Grant from Texas College of Osteopathic Medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号