首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermine, spermidine and putrescine produce dose dependent stimulation of the invitro tubulinyl-tyrosine carboxypeptidase. Maximal stimulation was obtained with spermine, spermidine or putrescine at 0.06 mM, 1 mM and 6 mM, respectively. At higher concentrations, the enzyme activity was inhibited. The enzyme was also activated by Mg++; the concentration formaximal effect was 4–6 mM. The stimulation produced by optimal concentration of each amine was unaffected by Mg++ up to 2 mM; higher concentration of Mg++ showed inhibitory effect. At optimal Mg++ concentration, the carboxypeptidase activity was inhibited by increasing amine concentration. The amines at 0.5 or 5 mM did not produce any effect on the incorporation of tyrosine catalyzed by tubulin tyrosine ligase.  相似文献   

2.
3.
Determinations of the amounts of putrescine, spermidine and spermine in tissues from mice and cows indicated that the eye melanocytes are very rich in these substances. The concentration of these di-and polyamines was also found to be much higher in pigmented than in albino hair of mice. The melanin polymer has the character of a polyanion — explaining the affinity of these cations for pigmented tissues. Further experiments indicated that these substances to a considerable extent may reach the melanin-containing tissues via the circulation.  相似文献   

4.
Labelled putrescine is converted to spermidine and spermine in the retina of both the goldfish and of the rat, but the bulk remains as putrescine and spermidine in the goldfish retina whereas the bulk is present as spermine in the rat retina. Labelled spermidine is converted to spermine and to putrescine in the retina of both species, most remaining as spermidine in the goldfish retina whereas most is converted to spermine in the rat retina. Labelled spermine is converted to both spermidine and putrescine in the retina of both species with a greater conversion in the goldfish retina than in the rat retina. These results provide direct evidence of the interconversion of putrescine, spermidine and spermine in neural tissue from both fish and mammals and suggest that spermine should not be regarded solely as an end-product of putrescine metabolism but also as a source of spermidine and putrescine.The pattern of distribution of putrescine and the polyamines, spermidine and spermine, in goldfish retina is the reverse of that in rat retina: Putrescine is the most abundant in goldfish retina whereas spermine is most abundant in rat retina suggesting that the individual polyamines are of different importance in the two species.  相似文献   

5.
6.
A high performance liquid chromatographic (HPLC) method, based on dansylation and fluorescence detection, is described for the estimation of putrescine, spermidine, and spermine in lichen (Evernia prunastri [L.]) samples. Because of the high concentrations of phenols and salts, dansylation was followed by a pre-HPLC purification step. Both flow rate and mobile phase (methanol:water) followed a gradient for optimum resolution on a reverse-phase column. Amounts as small as 0.3 picomole of standard polyamines could be detected. In applying the method to lichens, it was found that 5.45% (w/w) of the exogenous putrescine taken up by the thallus was unbound in the algal partner and that 60% (w/w) was conjugated in the thallus, perhaps to lichen phenolics.  相似文献   

7.
The present experiments are the first survey of the association of endogenous and exogenous putrescine, spermidine, and spermine with subcellular structures of rat brain cortex. The differences of distribution in subfractions obtained from salt-free and salt-containing density gradients were studied, with the following results: (1) In contrast with liver preparation, putrescine and the polyamines spermidine and spermine are not distributed in parallel with RNA. (2) In salt-containing media, putrescine and the polyamines were preferentially associated with synaptosomes and with synaptosomal membranes. Significant association with myelin constituents was observed only in salt-free media. (3) Exogenous putrescine and the polyamines were less firmly attached to synaptosomes and to synaptosomal membrane fractions than the endogenous amines. There is good evidence for similar subcellular localizations of putrescine and GABA. Putrescine seems to be entrapped in the nerve endings. (4) Uptake studies with crude mitochondria under conditions of high-affinity uptake showed no temperature-sensitive component of polyamine accumulation in synaptosomes, in contrast with GABA, monoacetylputrescine, and ornithine. (5) Polyamines bound to myelin constituents or mitochondria could be displaced by a 200-fold concentration of nonradioactive amines; this was not the case with polyamines bound to synaptosomes. Mg2+ did not effectively compete with spermine for binding sites at synaptic regions. (6) Electrical stimulation and stimulation by mono- and bivalent cations did not change the concentrations of the polyamines and GABA in guinea pig cortex. (7) There is no evidence for a neurotransmitter role of putrescine, spermidine, or spermine, although these compounds might function as modulators of neurotransmission.  相似文献   

8.
It is shown that in the tissue of the human brain glial tumours the content of putrescine depends on the degree of the tumour malignization. In malignant gliomas (glioblastomas), as compared to the benign (astrocytomas), the content of putrescine is significantly higher. The content of spermidine in glial tumours of a malignancy different degree is twice as high as the level of this polyamine in the brain grey matter, and it is twice as low as in the white matter. The content of spermine in the brain glial tumours does not differ essentially from its level in the brain tissue.  相似文献   

9.
D H Russell 《Life sciences》1973,13(12):1635-1647
Despite the initial aversion to polyamine research which can be attributed to their peculiar nomenclature and to the erroneous idea that polyamines are products of bacterial decay, it appears that these ubiquitous amines play important roles in the physiological regulation of growth. Many of the definitive roles are yet to be elucidated, and these areas offer promise to biochemists. The evolution of the multifaceted ramifications of polyamines is not unlike that for cyclic AMP, which has profound effects at the cellular level. Further, we are at a stage at which basic knowledge of the roles of polyamines is becoming clinically relevant. We should begin to measure polyamines routinely to obtain clinical parameters which might allow for more efficacious treatment of cancer. No longer can the discussion of polyamines in biochemical textbooks be limited to a page and a half or no discussion at all, and no longer can well-informed scientists afford to neglect the importance and the far-reaching applications of polyamine research.  相似文献   

10.
A fast and sensitive method for the determination of putrescine, spermidine, spermine and ammonia by high-performance liquid chromatography (HPLC) with dabsyl chloride is described. These compounds are converted to their chromophoric dabsyl derivatives and are separated by a normal-phase chromatographic column (μPorasil, 10 μm) with 2% acetone in chloroform as isocratic mobile phase. The sensitivity of the method is 20 pmoles. The present method was shown to be a straightforward procedure for estimating polyamines in various rat tissues.The chromophoric derivatives of polyamines are also well separated by thin-layer chromatography (TLC) on silica gel, and the combination of the HPLC and TLC procedures provides a reliable method for qualitative and quantitative analysis of polyamines.  相似文献   

11.
The in vitro enzymatic acetylation of the polyamines, spermidine and spermine, is described. The reaction is catalyzed by chromatin preparations from rat liver and kidney and is dependent on acetyl-CoA. Spermidine, spermine, and putrescine are each converted to the corresponding monoacetyl derivatives. s0.5 values of 0.5 ± 0.1, 1.0 ± 0.1, and 2.6 ± 0.7 mm (mean ± standard deviation) were obtained for spermidine, spermine, and putrescine, respectively. These values for s0.5 are similar to the concentrations of polyamines reported for tissues, and therefore, suggest the occurrence of polyamine acetylation in vivo. Evidence is also presented for the metabolism of acetylated polyamines by the 100,000g supernatant fraction of rat liver. The physiological function of polyamine acetylation is unknown, but the possibility of an effect on the association of polyamines with nucleic acids is discussed.  相似文献   

12.
We present evidence that polyamine uptake into rat liver mitochondria is mediated by a specific polyamine uniporter. Polyamine transport is not mediated by the ornithine, lysine, or Ca2+ transporters of mitochondria. Polyamine transport is a saturable process, with apparent Km values of 0.13 mM for spermine, 0.26 mM for spermidine, and 1 mM for putrescine. These substrates are mutually competitive inhibitors, indicating a common transport system. Polyamine transport is strictly dependent on membrane potential and insensitive to medium pH, showing that these polycations are transported electrophoretically. Spermine, spermidine, and putrescine are taken up by rat liver mitochondria at rates that increase with increasing valence of the transported species. The activation enthalpies for transport were 24, 32, and 59 kJ/mol for putrescine, spermidine, and spermine, respectively. These values, which amount to about 12 kJ/mol per charge transferred, may be compared to a value of 76 kJ/mol observed for monovalent tetraethylammonium cation. Flux-voltage analysis is consistent with the hypothesis that the mitochondrial polyamine transporter catalyzes transport via a channel mechanism.  相似文献   

13.
Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

14.
The marked enhancement of the activity of ornithine decarboxylase (EC 4.1.1.17) in rat liver at 4 h following partial hepatectomy or the treatment with growth hormone could be almost completely prevented by intraperitoneal administration of putrescine. A single injection of putrescine to partially hepatectomized rats caused a remarkably rapid decline in the activity of liver ornithine decarboxylase with an apparent half-life of only 30 min, which is almost as rapid as the decay of the enzyme activity after the administration of inhibitors of protein synthesis. Under similar conditions putrescine did not have any inhibitory effect on the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) or tyrosine aminotransferase (EC 2.6.1.5). Spermidine given at the time of partial hepatectomy or 2 h later also markedly inhibited ornithine decarboxylase activity at 4 h after the operation and, in addition, also caused a slight inhibition of the activity of adenosylmethionine decarboxylase.  相似文献   

15.
The binding of spermidine and putrescine to mitochondrial membranes was studied by applying a thermodynamic model of ligand-receptor interactions developed both for equilibrium and far-from-equilibrium binding processes (V. Di Noto, L. Dalla Via, A. Toninello, and M. Vidali Macromol. Theory Simul. 5, 165-181, 1996). Results demonstrate the presence of two monocoordinated binding sites (S1 and S2) for spermidine and one monocoordinated binding site (S2) for putrescine, all exhibiting high capacity and low affinity. It is proposed that differences in the polyamines' flexibility and hydrophilicity perhaps contributes to the observed variations in their interactions with the two sites. A comparison of the binding parameters of these polyamines with those of spermine reveals differences in the specific function of the S1 and S2 sites, identified in studies of spermine binding (L. Dalla Via, V. Di Noto, D. Siliprandi, and A. Toninello Biochim. Biophys. Acta 1284, 247-252, 1996).  相似文献   

16.
Following the administration to mice of radiolabeled putrescine by intraventricular injection, changes in the specific radioactivity of putrescine, spermidine, and spermine have been measured. Putrescine decline was biphasic, being more rapid over the first 12 hr(t 1/2=5 hr) than over the remainder of the 48-hr period (t 1/2=11 hr) that significant labeling was detected. Spermidine was rapidly labeled during the decline in putrescine radioactivity and maximum incòrporation of label occurred at 18 hr. Subsequently, spermidine specific activity declined with a half-life of 22 days. Spermine synthesis was slower, with maximum labeling occurring after 4 days. Spermine turnover, measured at a time when spermidine radioactivity had substantially declined, was extremely slow (t 1/2=92 days). The data supports the view that putrescine is a precursor of spermidine which in turn is required for spermine synthesis.  相似文献   

17.
18.
A fast and sensitive method for the determination of putrescine, spermidine and spermine by high-performance liquid chromatography is described. These compounds are converted to their fluorescent dansyl derivatives and are separated by a reversed-phase chromatographic system (Micropak CH-10) with water and acetonitrile as mobile phase. The sensitivity of the method is 30 pmoles.The application of the method to the determination of polyamines in blood is described. It was found that most of the polyamines circulating in blood are localized in the erythrocytes, their content in normal human blood being spermidine 14.1 ± 3.1, and spermine 8.4 ± 2.8 nmoles/ml packed erythrocytes. Putrescine is not present in normal human erythrocytes. The polyamine level in serum is less than 0.1 nmole/ml.The polyamine content of the erythrocytes from patients with malignant neoplasm was significantly elevated.  相似文献   

19.
20.
The in vitro and in vivo developmental potential of nuclear transferred embryos receiving follicular epithelial cells pretreated with spermine (5 and 20 mM), protamine (0.25 and 25 mg/ml), or putrescine (1 and 100 microg/ml) at room and reduced temperatures was examined in the mouse. The pretreated donor cells were first fused with enucleated oocytes, and then nuclei from reconstituted eggs at the two-cell stage were fused with the enucleated fertilized two-cell embryos. The proportion of reconstituted embryos that developed into blastocysts was not significantly different among groups. After transfer to recipients, implantation rates were not different between groups and fetuses were obtained in protamine- and spermine-treated groups as well as in control groups. These results demonstrate that pretreatment of nuclear donor cells with spermine, protamine, or putrescine does not enhance the developmental potential in vitro or in vivo in the mouse. J. Exp. Zool. 289:208-212, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号