首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue.  相似文献   

2.
Eight-arm poly(ethylene glycol)-poly(L-lactide), PEG-(PLLA)(8), and poly(ethylene glycol)-poly(D-lactide), PEG-(PDLA)(8), star block copolymers were synthesized by ring-opening polymerization of either L-lactide or D-lactide at room temperature in the presence of a single-site ethylzinc complex and 8-arm PEG (M(n) = 21.8 x 10(3) or 43.5 x 10(3)) as a catalyst and initiator, respectively. High lactide conversions (>95%) and well-defined copolymers with PLLA or PDLA blocks of the desired molecular weights were obtained. Star block copolymers were water-soluble when the number of lactyl units per poly(lactide) (PLA) block did not exceed 14 and 17 for PEG21800-(PLA)(8) and PEG43500-(PLA)(8), respectively. PEG-(PLA)(8) stereocomplexed hydrogels were prepared by mixing aqueous solutions with equimolar amounts of PEG-(PLLA)(8) and PEG-(PDLA)(8) in a polymer concentration range of 5-25 w/v % for PEG21800-(PLA)(8) star block copolymers and of 6-8 w/v % for PEG43500-(PLA)(8) star block copolymers. The gelation is driven by stereocomplexation of the PLLA and PDLA blocks, as confirmed by wide-angle X-ray scattering experiments. The stereocomplexed hydrogels were stable in a range from 10 to 70 degrees C, depending on their aqueous concentration and the PLA block length. Stereocomplexed hydrogels at 10 w/v % polymer concentration showed larger hydrophilic and hydrophobic domains as compared to 10 w/v % single enantiomer solutions, as determined by cryo-TEM. Correspondingly, dynamic light scattering showed that 1 w/v % solutions containing both PEG-(PLLA)(8) and PEG-(PDLA)(8) have larger "micelles" as compared to 1 w/v % single enantiomer solutions. With increasing polymer concentration and PLLA and PDLA block length, the storage modulus of the stereocomplexed hydrogels increases and the gelation time decreases. Stereocomplexed hydrogels with high storage moduli (up to 14 kPa) could be obtained at 37 degrees C in PBS. These stereocomplexed hydrogels are promising for use in biomedical applications, including drug delivery and tissue engineering, because they are biodegradable and the in-situ formation allows for easy immobilization of drugs and cells.  相似文献   

3.
Guo Y  Zhou J  Zhang L 《Biomacromolecules》2011,12(5):1927-1934
Dynamic viscoelastic properties of cellulose carbamate (CC) dissolved in NaOH aqueous solution were systematically studied for the first time. CC was microwave-assisted synthesized from the mixture of cellulose and urea and then dissolved in 7 wt % NaOH aqueous solution precooled to -7 °C. The obtained CC solution is transparent and has good liquidity. To clarify the rheological behavior of the solution, the CC solutions were investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G') as a function of the angular frequency (ω), concentration (c), nitrogen content (N %), viscosity-average molecular weight (M(η)), temperature (T), and time (t) were analyzed and discussed in detail. The sol-gel transition temperature of CC (M(η) = 7.78 × 10(4)) solution decreased from 36.5 to 31.3 °C with an increase of the concentration from 3.0 to 4.3 wt % and decreased from 35.7 to 27.5 °C with an increase of the nitrogen content from 1.718 to 5.878%. The gelation temperature of a 3.8 wt % CC solution dropped from 38.2 to 34.4 °C with the M(η) of CC increased from 6.35 × 10(4) to 9.56 × 10(4). The gelation time of the CC solution was relatively short at 30 °C, but the solution was stable for a long time at about 15 °C. Moreover, the gels already formed at elevated temperature were irreversible; that is, after cooling to a lower temperature including the dissolution temperature (-7 °C), they could not be dissolved to become liquid.  相似文献   

4.
The use of poly(ethylene glycol) (PEG) hydrogels in tissue engineering is limited by their persistence in the site of regeneration. In an attempt to produce inert hydrolytically degradable PEG-based hydrogels, star (SPELA) poly(ethylene glycol-co-lactide) acrylate macromonomers with short lactide segments (<15 lactides per macromonomer) were synthesized. The SPELA hydrogel was characterized with respect to gelation time, modulus, water content, sol fraction, degradation, and osteogenic differentiation of encapsulated marrow stromal cells (MSCs). The properties of SPELA hydrogel were compared with those of the linear poly(ethylene glycol-co-lactide) acrylate (LPELA). The SPELA hydrogel had higher modulus, lower water content, and lower sol fraction than the LPELA. The shear modulus of SPELA hydrogel was 2.2 times higher than LPELA, whereas the sol fraction of SPELA hydrogel was 5 times lower than LPELA. The degradation of SPELA hydrogel depended strongly on the number of lactide monomers per macromonomer (nL) and showed a biphasic behavior. For example, as nL increased from 0 to 3.4, 6.4, 11.6, and 14.8, mass loss increased from 7 to 37, 80, 100% and then deceased to 87%, respectively, after 6 weeks of incubation. The addition of 3.4 lactides per macromonomer (<10 wt % dry macromonomer or <2 wt % swollen hydrogel) increased mass loss to 50% after 6 weeks. Molecular dynamic simulations demonstrated that the biphasic degradation behavior was related to aggregation and micelle formation of lactide monomers in the macromonomer in aqueous solution. MSCs encapsulated in SPELA hydrogel expressed osteogenic markers Dlx5, Runx2, osteopontin, and osteocalcin and formed a mineralized matrix. The expression of osteogenic markers and extent of mineralization was significantly higher when MSCs were encapsulated in SPELA hydrogel with the addition of bone morphogenetic protein-2 (BMP2). Results demonstrate that hydrolytically degradable PEG-based hydrogels are potentially useful as a delivery matrix for stem cells in regenerative medicine.  相似文献   

5.
Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.  相似文献   

6.
Cheng Y  He C  Xiao C  Ding J  Zhuang X  Huang Y  Chen X 《Biomacromolecules》2012,13(7):2053-2059
Thermosensitive hydrogels based on PEG and poly(l-glutamate)s bearing different hydrophobic side groups were separately synthesized by the ring-opening polymerization (ROP) of l-glutamate N-carboxyanhydrides containing different alkyl protected groups, that is, methyl, ethyl, n-propyl, and n-butyl, using mPEG(45)-NH(2) as macroinitiator. The resulting copolymers underwent sol-gel transitions in response to temperature change. Interestingly, the polypeptides containing methyl and ethyl showed significantly lower critical gelation temperatures (CGTs) than those bearing n-propyl and butyl side groups. Based on the analysis of (13)C NMR spectra, DLS, circular dichroism spectra, and ATR-FTIR spectra, the sol-gel transition mechanism was attributed to the dehydration of poly(ethylene glycol) and the increase of β-sheet conformation content in the polypeptides. The in vivo gelation test indicated that the copolymer solution (6.0 wt %) immediately changed to a gel after subcutaneous injection into rats. The mass loss of the hydrogel in vitro was accelerated in the presence of proteinase K, and the MTT assay revealed that the block copolymers exhibited no detectable cytotoxicity. The present work revealed that subtle variation in the length of a hydrophobic side group displayed the decisive effect on the gelation behavior of the polypeptides. In addition, the thermosensitive hydrogels could be promising materials for biomedical applications due to their good biocompatibility, biodegradability, and the fast in situ gelation behavior.  相似文献   

7.
The gelation and melting behavior of 1∶1, 1∶3 xanthan-carob mixed gels were evaluated at isothermal and non-isothermal states, as a function of total polymer concentrations of 0.1, 0.5 and 1%. A thermal hysteresis was observed between gelation and melting. The higher the polymer concentration, the higher the melting temperature. The gelation points were determined by three criteria. Depending on the criterion used the gelation temperature was different (52 to 70°C). Pseudoequilibrium modulus and elastic active network chain (EANC) concentration were calculated from the plateau modulus in the frequency spectrum. Temperature dependence of the monomeric friction coefficient was estimated from the relaxation time and EANC. Time-temperature superposition theory was not applicable due to dramatic phase transitions occurring during the gelation of X/C mixture.  相似文献   

8.
9.
NB8 DNA ligase from an extract of Thermus thermophilus HB8 could catalyze blunt-end ligation in the presence of high concentration of polyethylene glycols (PEG) or in the presence of polyamines. In the presence of high molecular weight PEG 20,000, 6,000, or 1,000 (8-28%), the enzyme catalyzed blunt-end intermolecular joining to yield linear oligomers, but no circular DNA forms. But in the presence of low molecular PEG 400, 200 (8-80%), or the monomer, ethylene glycol (16-80%), the circular forms were also detected by intramolecular ligation. In the presence of polyamines, the blunt-end ligation products were linear oligomers and the optimum concentrations were as follows: caldopentamine (0.05 mM), thermine (0.1-0.2 mM), spermine (0.2 mM), thermospermine (0.4 mM), and sperminediol (0.75 mM). Spermidine and putrescine were less capable of producing oligomers. PEG and polyamines elevated the ligation temperature by HB8 DNA ligase. The optimum temperature of blunt-end ligation was about 65 degrees C.  相似文献   

10.
The effect of immobilization with various glass-forming monomers on the stability of PS II activity of spinach chloroplast was investigated. PS II activity (O2 evolution due to the Hill reaction) was reduced very slightly by the addition of monomers including polyethyleneglycol (PEG). Immobilization of chloroplast was done with hydrophobic monomer as well as hydrophilic monomer and activity of immobilized chloroplast increased with decreasing monomer concentration as far as the polymerization was possible. The activity of immobilized chloroplast was very high and it decayed far more gradually with the storage time in comparison with the decay of unimmobilized chloroplast and was retained more than 30 days. The optimum monomer concentration for immobilization was about 10%. Thermostability of chloroplast also increased greatly by immobilization with these monomers, especially hydrophilic monomers.  相似文献   

11.
The partition behavior of glycomacropeptide (GMP) was determined in polyethylene glycol (PEG) and sodium citrate aqueous two-phase systems (ATPS). It was found that the partitioning of GMP depends on PEG molar mass, tie line length, pH, NaCl concentration and temperature. The obtained data indicates that GMP is preferentially partitioned into the PEG phase without addition of NaCl at pH 8.0. Larger tie line lengths and higher temperatures favor GMP partition to the PEG phase. Furthermore, it was verified that PEG molar mass and concentration have a slight effect on GMP partition. The increase in the molar mass of PEG induces a reduction of the protein solubility in the top PEG rich phase, being shown that the use of PEG1500 is beneficial for the extraction of GMP. A protein recovery higher than 85% was obtained in the top phase of these systems, clearly demonstrating its suitability as a starting point for the separation of GMP.  相似文献   

12.
Heterobifunctional block copolymers of poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM using a macromolecular trithiocarbonate PEG-based chain transfer agent. The polymerization showed all the expected features of living radical polymerization and allowed the synthesis of copolymers with different lengths of the PNIPAM block. The synthesized block copolymers contained a carboxylic acid group from L-lysine at the focal point and a trithiocarbonate group at the terminus of the PNIPAM block. The trithiocarbonate functionality was converted into a thiol group and used for conjugation of biotin to the end of the PNIPAM block. The copolymers exhibited temperature-dependent association behavior in aqueous solution with a phase transition of approximately 32 degrees C. The described heterobifunctional block copolymers show promise for surface modifications with the potential for stimulus-controlled surface presentation of ligands attached to the terminus of the PNIPAM block.  相似文献   

13.
In yeast hexokinase B, two thiols per monomer appeared to be essential when enzymic inactivation was produced by the concurrent alkylation of both of them, by several reagents including the affinity reagent N-bromoacetyl-2-D-galactosamine. However, it is shown that only one of these thiols is actually essential. Three of the four thiols present can be blocked by alkylation in the presence of a substrate in appropriate conditions, without loss of enzymic activity. Subsequently, in the absence of substrate, the affinity reagent reacts at the one remaining thiol, with complete inactivation. The same behavior can be obtained by reaction with iodoacetamide or by the formation of the -SCN group. The affinity reagent inactivates hexokinase B faster than does the isomeric glycosidic compound (glycosides being nonsubstrates), although the latter has twice the reactivity of the former toward glutathione. The reactions with alkylating agents, with or without substrate present, are used to classify the four thiols in the monomer. The temperature dependence of the alkylation of the essential thiol provides evidence for a transition in the molecule at about 31 degrees C. The inactive monomer containing the -SCN group can regenerate, by thiolysis, active enzyme with the thiol free. It can also perform an intramolecular cleavage of the chain. The latter reaction was used to locate the essential cysteine residue in the chain, at 80% of the length from the N terminus.  相似文献   

14.
The diameter, membrane thickness, and compression intensity of hollow Ca-alginate capsules were measured at different gelation conditions, such as the reactant concentration, dropping velocity, and gelation time. The optimum operation conditions for preparing capsules were determined at 100 g/L CaCl(2), 10 g/L sodium alginate (Na-alginate), a dropping velocity of 150 droplets/min, and a gelation time of 10 min. Diffusion of some saccharide and amino acid from bulk solution into capsules was investigated, and the diffusion coefficients were calculated by the developed mathematical model. All the tested substances can diffuse easily into the capsules. The combined diffusion coefficients of the capsule D(m) are 92-99% as large as their diffusion coefficients in pure water, while the diffusion coefficients in the capsule membrane D(1) are 60-95% as large as those. By employing polyethylene glycol (PEG) and bovine serum albumin (fraction V) (BSA(V)), the molecular weight cut-off of the capsule was determined. For linear macromolecules, hollow Ca-alginate capsules have a molecular weight cut-off of 4000. No diffusion of BSA(V) into the capsules was observed.  相似文献   

15.
Blood coagulation or plasma clotting caused generation of a monocyte chemotactic factor(s) in vitro. The chemotactic factor, of which the apparent molecular mass was 75 kDa, shared antigenicity with complement C5 and possessed the affinity to monocytes, but not to polymorphonuclear leukocytes. The generation of the chemotactic factor was hindered in the presence of a thiol enzyme inhibitor, p-chloromercuriphenyl sulfonic acid, at the concentration of 1 mmol/l, although the gelation of plasma was apparently completed. Furthermore, the generation of chemotactic factor was not observed when a plasma deficient in blood coagulation factor XIII, which is a precursor of a thiol enzyme, plasma transglutaminase, was used; and the activity normally appeared when the deficient plasma was reconstituted with purified factor XIII or with a tissue transglutaminase prior to clotting. When the human sera were injected into guinea pig skin, the serum derived from normal plasma or from the reconstituted factor XIII deficient one caused mononuclear cell infiltration, however, the serum from the deficient plasma without reconstitution infiltrated to a significantly smaller extent. These results indicated that the complement system was initiated somehow during the clotting process resulting in the generation of the C5-derived monocyte chemotactic factor in cooperation with factor XIIIa (activated factor XIII).  相似文献   

16.
We study the kinetics of prion fibril growth, described by the nucleated polymerization model analytically and by means of numerical experiments. The elementary processes of prion fibril formation lead us to a set of differential equations for the number of fibrils, their total mass, and the number of prion monomers. In difference to previous studies we analyze this set by explicitly taking into account the time-dependence of the prion monomer concentration. The theoretical results agree with experimental data, whereas the generally accepted hypothesis of constant monomer concentration leads to a fibril growth behavior which is not in agreement with experiments. The obtained size distribution of the prion fibril aggregates is shifted significantly toward shorter lengths as compared to earlier results, which leads to a enhanced infectivity of the prion material. Finally, we study the effect of filtering of the inoculated material on the incubation time of the disease.  相似文献   

17.
J R Wu  B R Lentz 《Biochemistry》1991,30(27):6780-6787
Experiments were performed to assess three possible mechanisms of poly(ethylene glycol) (PEG) induced rapid lipid transfer between large unilamellar vesicles composed of dioleoylphosphatidylcholine: (1) transfer between aggregated vesicles, (2) transfer through an aqueous medium of lowered dielectric constant, and (3) transfer via a PEG carrier. The results showed that close contact between vesicles as a result of PEG dehydration was largely responsible for the rapid lipid transfer observed in the presence of PEG. The rate and extent of lipid transfer were also examined at 10 wt % PEG and analyzed in terms of a two-state model especially developed to account for the initial rate of lipid transfer as followed by the fluorescence lifetime of DPHpPC as a fluorescent lipid probe. Analysis revealed that two rate processes were involved in DPHpPC transfer between bilayers, both in the absence and presence of PEG. Since the maximum extent of transfer was 50%, transbilayer diffusion of DPHpPC seemed not to contribute to either process. The fast process in the presence of PEG was identified as due to rapid interbilayer monomer diffusion between closely apposed vesicles, and, in the absence of PEG, as due to monomer diffusion through the aqueous phase. The origin of the slow process, in both cases, remains obscure. The Arrhenius activation energies (and entropies) for the initial rates at temperatures from 10 to 48 degrees C were 15.3 +/- 0.3 kcal/mol (-26.3 +/- 0.2 eu) and 10.6 +/- 0.5 kcal/mol (-16.1 +/- 0.3 eu) in the absence and presence of PEG, respectively. The slow process was invariant with temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have investigated dilute protein solutions with fluorescence correlation spectroscopy (FCS) and have observed that a rapid loss of proteins occurs from solution. It is commonly assumed that such a loss is the result of protein adsorption to interfaces. A protocol was developed in which this mode of protein loss can be prevented. However, FCS on fluorescent protein (enhanced green fluorescent protein, mCherry, and mStrawberry) solutions enclosed by adsorption-protected interfaces still reveals a decrease of the fluorescent protein concentration, while the diffusion time is stable over long periods of time. We interpret this decay as a loss of protein functionality, probably caused by denaturation of the fluorescent proteins. We show that the typical lifetime of protein functionality in highly dilute, approximately single molecule per femtoliter solutions can be extended more than 1000-fold (typically from a few hours to >40 days) by adding compounds with surfactant behavior. No direct interactions between the surfactant and the fluorescent proteins were observed from the diffusion time measured by FCS. A critical surfactant concentration of more than 23 μM was required to achieve the desired protein stabilization for Triton X-100. The surfactant does not interfere with DNA-protein binding, because similar observations were made using DNA-cutting restriction enzymes. We associate the occurrence of denaturation of proteins with the activity of water at the water-protein interface, which was recently proposed in terms of the “water attack model”. Our observations suggest that soluble biomolecules can extend an influence over much larger distances than suggested by their actual volume.  相似文献   

19.
The heat-induced gelation properties of myosin in low salt concentration were studied. Freshly prepared myosin formed gels with an extremely high rigidity in 0.1 to 0.3 m KC1 at pH 6.0 on heating. This high heat-induced gel formability of myosin filaments diminished during storage, concomitant with the loss of the filament formability inherent in the native myosin. Presumably intermolecular aggregation was the cause of this loss during storage. The difference in the heat-induced gelation of myosin filaments at a low salt concentration (0.2 m KC1) and that of myosin monomers at a high salt concentration (0.6 m KC1) was clearly.distinguishable from their gelling behavior. The high gelation ability of freshly prepared myosin filaments upon heating seems to develop through the interfilamental head-head aggregation on the surface of the filaments without involving the tail portion of the molecule.  相似文献   

20.
Unique gelation behavior of cellulose in NaOH/urea aqueous solution   总被引:11,自引:0,他引:11  
Cai J  Zhang L 《Biomacromolecules》2006,7(1):183-189
A transparent cellulose solution was prepared by mixing 7 wt % NaOH with 12 wt % urea aqueous solution which was precooled to below -10 degrees C and which was able to rapidly dissolve cellulose at ambient temperature. The rheological properties and behavior of the gel-formed cellulose solution were investigated by using dynamic viscoelastic measurement. The effects of temperature, time, cellulose molecular weight, and concentrations on both the shear storage modulus (G') and the loss modulus (G") were analyzed. The cellulose solution having a viscosity-average molecular weight (M(eta)) of 11.4 x 10(4) had its sol-gel transition temperature decreased from 60.3 to 30.5 degrees C with an increase of its concentration from 3 to 5 wt %. The gelation temperature of a 4 wt % cellulose solution dropped from 59.4 to 30.5 degrees C as the M(eta) value was increased from 4.5 x 10(4) to 11.4 x 10(4). Interestingly, at either higher temperature (above 30 degrees C), or lower temperature (below -3 degrees C), or for longer gelation time, gels could form in the cellulose solutions. However, the cellulose solution remains a liquid state for a long time at the temperature range from 0 to 5 degrees C. For the first time, we revealed an irreversible gelation in the cellulose solution system. The gel having been formed did not dissolve even when cooled to the temperature of -10 degrees C, at which it was dissolved previously. Therefore, this indicates that either heating or cooling treatment could not break such stable gels. A high apparent activation energy (E(a)) of the cellulose solution below 0 degrees C was obtained and was used to explain the gel formation under the cooling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号