首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Members of the T-box gene family play important and diverse roles in development and disease. Here, we study the functional specificities of the Xenopus T-domain proteins Xbra and VegT, which differ in their abilities to induce gene expression in prospective ectodermal tissue. In particular, VegT induces strong expression of goosecoid whereas Xbra cannot. Our results indicate that Xbra is unable to induce goosecoid because it directly activates expression of Xom, a repressor of goosecoid that acts downstream of BMP signaling. We show that the inability of Xbra to induce goosecoid is imposed by an N-terminal domain that interacts with the C-terminal MH2 domain of Smad1, a component of the BMP signal transduction pathway. Interference with this interaction causes ectopic activation of goosecoid and anteriorization of the embryo. These findings suggest a mechanism by which individual T-domain proteins may interact with different partners to elicit a specific response.  相似文献   

13.
14.
During Xenopus early development, FGF signaling is involved in mesoderm formation and neurogenesis by modulating various signaling cascades. FGF-MAPK signaling induces Xbra expression, which maintains mesodermal fate through an autocatalytic-loop. Interestingly, previous reports have demonstrated that basic FGF (bFGF) treatment alone does not induce neurogenesis in ectodermal explants, even though FGF signaling inhibits BMP signaling via phosphorylation in Smad1 linker region. In addition, the overexpression of dominantnegative Xbra induces neurogenesis in ectodermal explants. However, the detailed mechanism underlying these phenomena has not yet been clarified. In this work, we showed that bFGF-Xbra signaling increased the PV.1 expression. DN-Xbra was found to decrease PV.1 expression, and the co-injection of PV.1 with DN-Xbra reduced neurogenesis in ectodermal explants. Furthermore, the knockdown of PV.1 induced neurogenesis in bFGF-treated ectodermal explants. Taken together, our results demonstrate that FGF-Xbra signaling induces PV.1 expression and that PV.1 functions as a neural repressor in the FGF-treated ectoderm. [BMB Reports 2014; 47(12): 673-678]  相似文献   

15.
16.
Recent studies indicate an essential role for the EGF-CFC family in vertebrate development, particularly in the regulation of nodal signaling. Biochemical evidence suggests that EGF-CFC genes can also activate certain cellular responses independently of nodal signaling. Here, we show that FRL-1, a Xenopus EGF-CFC gene, suppresses BMP signaling to regulate an early step in neural induction. Overexpression of FRL-1 in animal caps induced the early neural markers zic3, soxD and Xngnr-1, but not the pan-mesodermal marker Xbra or the dorsal mesodermal marker chordin. Furthermore, overexpression of FRL-1 suppressed the expression of the BMP-responsive genes, Xvent-1 and Xmsx-1, which are expressed in animal caps and induced by overexpressed BMP-4. Conversely, loss of function analysis using morpholino-antisense oligonucleotides against FRL-1 (FRL-1MO) showed that FRL-1 is required for neural development. FRL-1MO-injected embryos lacked neural structures but contained mesodermal tissue. It was suggested previously that expression of early neural genes that mark the start of neuralization is activated in the presumptive neuroectoderm of gastrulae. FRL-1MO also inhibited the expression of these genes in dorsal ectoderm, but did not affect the expression of chordin, which acts as a neural inducer from dorsal mesoderm. FRL-1MO also inhibited the expression of neural markers that were induced by chordin in animal caps, suggesting that FRL-1 enables the response to neural inducing signals in ectoderm. Furthermore, we showed that the activation of mitogen-activated protein kinase by FRL-1 is required for neural induction and BMP inhibition. Together, these results suggest that FRL-1 is essential in the establishment of the neural induction response.  相似文献   

17.
18.
Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFβ inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFβ pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFβ-pathways should be interpreted with considerable caution.  相似文献   

19.
Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21Waf1/Cip1 mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21Waf1/Cip1 induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号