首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf and stem material of Passiflora edulis (Passifloraceae) contains the new cyanogenic glycosides (2R)-beta-D-allopyranosyloxy-2-phenylacetonitrile (1a) and (2S)-beta-D-allopyranosyloxy-2-phenylacetonitrile (1b), along with smaller amounts of (2R)-prunasin (2a), sambunigrin (2b), and the alloside of benzyl alcohol (4); the major cyanogens of the fruits are (2R)-prunasin (2a) and (2S)-sambunigrin (2b). The major cyanogenic glycoside of Carica papaya (Caricaceae) is 2a; only small amounts of 2b also are present. We were not able to confirm the presence of a cyclopentenoid cyanogenic glycoside, tetraphyllin B, in Carica papaya leaf and stem materials. In detailed 1H NMR studies of 1a/b and 2a/b, differences in higher order effects in glucosides and allosides proved to be valuable for assignment of structures in this series. The diagnostic chemical shifts of cyanogenic methine and anomeric protons in 1a/b are sensitive to anisotropic environmental effects. The assignment of C-2 stereochemistry of 1a/b was made in analogy to previous assignments in the glucoside series and was supported by GLC analysis of the TMS ethers.  相似文献   

2.
The cyanogenic glucoside-related compound prunasinamide, (2R)-β-d-glucopyranosyloxyacetamide, has been detected in dried, but not in fresh leaves of the prunasin-containing species Olinia ventosa, Prunus laurocerasus, Pteridium aquilinium and Holocalyx balansae. Experiments with leaves of O. ventosa indicated a connection between amide generation and an excessive production of reactive oxygen species. In vitro, the Radziszewski reaction with H2O2 has been performed to yield high amounts of prunasinamide from prunasin. This reaction is suggested to produce primary amides from cyanogenic glycosides in drying and decaying leaves. Two different benzoic acid esters which may be connected to prunasin metabolism were isolated and identified as the main constituents of chlorotic leaves from O. ventosa and P. laurocerasus.  相似文献   

3.
Nineteen species of Passiflora (Passifloraceae) were examined for the presence of cyanogenic glycosides. Passibiflorin, a bisglycoside containing the 6-deoxy-beta-D-gulopyranosyl residue, was isolated from P. apetala, P. biflora, P. cuneata, P. indecora, P. murucuja and P. perfoliata. In some cases this glycoside co-occurs with simple beta-D-glucopyranosides: tetraphyllin A, deidaclin, tetraphyllin B, volkenin, epivolkenin and taraktophyllin. P. citrina contains passicapsin, a rare glycoside with the 2,6-dideoxy-beta-D-xylo-hexopyranosyl moiety, while P. herbertiana contains tetraphyllin A, deidaclin, epivolkenin and taraktophyllin, P. discophora tetraphyllin B and volkenin, and P. x violacea tetraphyllin B sulfate. The remaining species were noncyanogenic. The glycosides were identified by 1H and 13C NMR spectroscopy following isolation by reversed-phase preparative HPLC. From P. guatemalensis, a new glucoside named passiguatemalin was isolated and identified as a 1-(beta-D-glucopyranosyloxy)-2,3-dihydroxycyclopentane-1-carbonitrile. An isomeric glycoside was prepared by catalytic hydrogenation of gynocardin. alpha-Hydroxyamides corresponding to the cyanogenic glycosides were isolated from several Passiflora species. These alpha-hydroxyamides, presumably formed during processing of the plant material, behave as cyanogenic compounds when treated with commercial Helix pomatia crude enzyme preparation. Thus, the enzyme preparation appears to contain an amide dehydratase, which converts alpha-hydroxyamides to cyanohydrins that liberate cyanide; this finding is of interest in connection with analysis of plant tissues and extracts using Helix pomatia enzymes.  相似文献   

4.
番木瓜的离体繁殖   总被引:1,自引:0,他引:1  
建立番木瓜离体繁殖体系.用0.1%HgCl2溶液对番木瓜的新生嫩茎进行消毒,适宜的消毒时间为12min,1mm茎尖的成苗率达到87.6%.随蔗糖浓度的提高,番木瓜试管苗的株高显著降低,增殖系数显著增加.在附加IBA0.3mg/L的1/2MS培养基上新梢的生根率达到89.3%,试管苗大规模移栽的成活率达90%以上.基因型显著地影响番木瓜离体增殖的效率.  相似文献   

5.
Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses.  相似文献   

6.
Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities.

Abbreviations

ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - – Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - – Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.  相似文献   

7.
A survey of 682 accessions including 550 species and most genera of the Flacourtiaceae for cyclopentenoid cyanogenic glycosides showed the presence of only three compounds. These were found only in the tribes Berberidopsideae, Oncobeae, Pangieae and Banaraeae. The family is thus divided into cyanogenic and acyanogenic members. The former group possess compounds of similar structure to those of the Passifloraceae and have been considered primitive morphologically. It seems improbable that the Passifloraceae are derived from the acyanogenic, and putatively evolutionarily more advanced, group of Flacourtiaceae.  相似文献   

8.
Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family.  相似文献   

9.
ACC oxidase from Carica papaya: Isolation and characterization   总被引:1,自引:0,他引:1  
Most of the studies done on 1‐aminocyclopropane 1‐carboxylic acid (ACC) oxidase were done in vivo. It is only recently that in vitro studies have been carried out successfully on the enzyme. Here we report on in vitro studies of the enzyme that was isolated from Carica papaya . The enzyme had a Km of 37 µ M and was inhibited by n ‐propyl gallate (0.240 m M ), sodium dithionite (0.022 m M ), sodium metabisulphite (0.021 m M ) and cobalt sulphate (0.100 m M ). The activity of the enzyme increased with ripening, the enzyme was somewhat labile and activity was lost after 4 days at 14°C; activity was prolonged when the crude homogenate was kept at −15°C. Isolation and purification were achieved with ammonium sulphate precipitation followed by gel‐filtration (Sephadex G 100‐120) and ion‐exchange chromatography (DEAE‐Sephadex). Gel electrophoresis of the purified enzyme gave a single band which corresponded to a molecular mass of 27.5 kDa. The amino acid content of the enzyme showed a relatively high percentage of valine (10.4%). Enzyme activity was enhanced when dithiothreitol (3 m M ) and bicarbonate ion (30 m M ) were added to the assay medium. The production of ethylene from Carica papaya did not require pretreatment of the fruit with ethylene.  相似文献   

10.
Genetic diversity of Carica papaya as revealed by AFLP markers.   总被引:4,自引:0,他引:4  
Genetic relationships among Carica papaya cultivars, breeding lines, unimproved germplasm, and related species were established using amplified fragment length polymorphism (AFLP) markers. Seventy-one papaya accessions and related species were analyzed with nine EcoRI-MseI primer combinations. A total of 186 informative AFLP markers was generated and analyzed. Cluster analysis suggested limited genetic variation in papaya, with an average genetic similarity among 63 papaya accessions of 0.880. Genetic diversity among cultivars derived from the same or similar gene pools was smaller, such as Hawaiian Solo hermaphrodite cultivars and Australian dioecious cultivars with genetic similarity at 0.921 and 0.912, respectively. The results indicated that self-pollinated hermaphrodite cultivars were as variable as open-pollinated dioecious cultivars. Genetic diversity between C. papaya and six other Carica species was also evaluated. Carica papaya shared the least genetic similarity with these species, with an average genetic similarity of 0.432; the average genetic similarity among the six other species was 0.729. The results from AFLP markers provided detailed estimates of the genetic variation within and among papaya cultivars, and supported the notion that C. papaya diverged from the rest of Carica species early in the evolution of this genus.  相似文献   

11.
Carica papaya L. (Caricaceae) was found to contain the cyclopentene-ring containing cyanogenic glucoside tetraphyllin B as well as the aromatic cyanogenic glucoside prunasin. This is the first report of the isolation of cyanogenic glucosides from a species known to produce glucosinolates. The presence of both classes of compounds suggests that Carica papaya may be intermediate between the Capparales and the Violales.  相似文献   

12.
When [2-14C]cyclopentenylglycine was synthesized and fed to seedlings of Turnera ulmifolia, the label was incorporated into the nitrile group of the cyanogenic glycoside deidaclin. The amino acid cyclopentenylglycine was also found to occur naturally in Turnera ulmifolia. These findings indicate that cyclopentenyl cyanogenic glycosides are synthesized from the corresponding amino acids by the same pathway utilized in the biosynthesis of other cyanogenic glycosides.  相似文献   

13.
In this study approximately 420 of the described species of Eucalyptus were examined for cyanogenesis. Our work has identified an additional 18 cyanogenic species, 12 from living tissues and a further six from herbarium samples. This brings the total of known cyanogenic species to 23, representing approximately 4% of the genus. The taxonomic distribution of the species within the genus is restricted to the subgenus Symphyomyrtus, with only two exceptions. Within Symphyomyrtus, the species are in three closely related sections. The cyanogenic glycoside was found to be predominantly prunasin (1) in the 11 species where this was examined. We conclude that cyanogenesis is plesiomorphic in Symphyomyrtus (i.e. a common basal trait) but has probably arisen independently in the other two subgenera, consistent with recent phylogenetic treatments of the genus. The results of this study have important implications for the selection of trees for plantations to support wildlife, and to preserve genetic diversity.  相似文献   

14.
Seigler DS 《Phytochemistry》2005,66(13):1567-1580
The major cyanogenic glycoside of Guazuma ulmifolia (Sterculiaceae) is (2R)-taxiphyllin (>90%), which co-occurs with (2S)-dhurrin. Few individuals of this species, but occasional other members of the family, have been reported to be cyanogenic. To date, cyanogenic compounds have not been characterized from the Sterculiaceae. The cyanogenic glycosides of Ostrya virginiana (Betulaceae) are (2S)-dhurrin and (2R)-taxiphyllin in an approximate 2:1 ratio. This marks the first report of the identification of cyanogenic compounds from the Betulaceae. Based on NMR spectroscopic and TLC data, the major cyanogenic glucoside of Tiquilia plicata is dhurrin, whereas the major cyanide-releasing compound of Tiquilia canescens is the nitrile glucoside, menisdaurin. NMR and TLC data indicate that both compounds are present in each of these species. The spectrum was examined by CI-MS, 1H and 13C NMR, COSY, 1D selective TOCSY, NOESY, and 1J/2,3J HETCOR experiments; all carbons and protons are assigned. The probable absolute configuration of (2R)-dhurrin is established by an X-ray crystal structure. The 1H NMR spectrum of menisdaurin is more complex than might be anticipated, containing a planar conjugated system in which most elements are coupled to several other atoms in the molecule. The coupling of one vinyl proton to the protons on the opposite side of the ring involves a 6J- and a 5/7J-coupling pathway. A biogenetic pathway for the origin of nitrile glucosides is proposed.  相似文献   

15.
对番木瓜叶枯病与植株营养、土壤相关养分的关系等进行研究,结果表明,番木瓜叶枯病是由于土壤有效钾缺乏而导致的一种生理性缺钾症;施用钾肥能有效控制该症的发生并获得较高产量。在发生缺钾叶枯病的番木瓜根、茎、叶片、叶柄等器官中镁含量均明显升高,说明番木瓜植株钾镁间存在拮抗作用。  相似文献   

16.
The Carica papaya lipase-catalyzed acylation of benzylcarbinols with vinyl hexanoate proceeded smoothly and enantiospecifically (E > 200), affording the R-esters and leaving the S-alcohols intact. Thus, this plant lipase proved to be a promising biocatalyst for the resolution of alcohols as well as for that of carboxylic acids reported earlier.  相似文献   

17.
Comparative phytochemical characterization of three Rhodiola species   总被引:2,自引:0,他引:2  
In comparison to the well-recognized adaptogenic herb Rhodiola rosea, phytochemical constituents of two other Rhodiola species (R. heterodonta and R. semenovii) were elucidated and characterized. Two major phytochemical groups; phenolic and/or cyanogenic glycosides and proanthocyanidins, were isolated and identified in the three species. Chemical similarities among the three species were observed; however, each species displayed differences in phytochemical constituents. R. heterodonta contained a newly detected phenylethanoid glycoside, heterodontoside, in addition to the known compounds tyrosol, viridoside, salidroside, and rhodiocyanoside A. Both R. heterodonta and R. rosea contained phenylethanoid/propanoid compounds that were not detected in R. semenovii. For R. semenovii, the cyanogenic glucosides rhodiocyanoside A and lotaustralin were detected. Although the three species have proanthocyanidins composed of (-)-epigallocatechin and its 3-O-gallate esters in common, the degree of polymerization greatly differed between them. In contrast to R. heterodonta and R. semenovii, R. rosea has higher molecular weight polymeric proanthocyanidins. This study resulted in the identification and isolation of phytochemical constituents for direct cross-comparison between three Rhodiola species of medicinal and pharmacological value.  相似文献   

18.
以番木瓜(穗中红-48)漏斗型体细胞胚胎为材料,探讨体细胞胚胎发育及植株再生的适宜条件。研究结果表明,附加2%椰乳、0.1mg/L ABA及40g/L蔗糖的MS固体培养基较适合番木瓜漏斗型胚状体的发育及成熟。充分成熟的子叶型胚状体在大量元素减半、蔗糖含量30g/L的MS培养基上,配合15001x光照可再生健康小植株;再生率为78%。  相似文献   

19.
Twelve grapevine (Vitis vinifera L.) cultivars were surveyed for 'cyanide potential' (i.e. the total cyanide measured in beta-glucosidase-treated crude, boiled tissue extract) in mature leaves. Two related cultivars (Carignan and Ruby Cabernet) had mean cyanide potential (equivalent to 110 mgHCNkg-1fr.wt) ca. 25-fold greater than that of the other 10 cultivars, and so the trait is polymorphic in the species. In boiled leaf extracts of Carignan and Ruby Cabernet, free cyanide constituted a negligible fraction of the total cyanide potential because beta-glucosidase treatment was required to liberate the major cyanide fraction - which is therefore bound in glucosylated cyanogenic compound(s) (or cyanogenic glucosides). In addition, cyanide was liberated from ground leaf tissue of Ruby Cabernet but not Sultana (a cultivar with low cyanide potential). Hence, the high cyanide potential in Ruby Cabernet leaves is coupled with endogenous beta-glucosidase(s) activity and this cultivar may be considered 'cyanogenic'. A method was developed to detect and identify cyanogenic glucosides using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). Two putative cyanogenic glucosides were found in extracts from leaves of Carignan and Ruby Cabernet and were identified as the epimers prunasin and sambunigrin. Cyanide potential measured at three times over the growing season in young and mature leaves, petioles, tendrils, flowers, berries, seeds and roots of Ruby Cabernet was substantially higher in the leaves compared with all other tissues. This characterisation of cyanogenic glucoside accumulation in grapevine provides a basis for gauging the involvement of the trait in interactions of the species with its pests and pathogens.  相似文献   

20.
Phytochemical analysis of the polar extracts of the leaves of Helleborus viridis (Ranunculaceae) resulted in the isolation of two new furostanol saponins (25R)-26-[(alpha-L-rhamnopyranosyl)oxy]-22alpha-methoxyfurost-5-en-3beta-yl O-beta-D-glucopyranosyl-(1-->3)-O-[6-acetyl-beta-D-glucopyranosyl-(1-->3)]-O-beta-D-glucopyranoside (1) and (25R)-26-[(alpha-L-rhamnopyranosyl)oxy]-22alpha-methoxyfurost-5-en-3beta-yl O-beta-D-glucopyranosyl-(1-->3)-O-beta-D-glucopyranosyl-(1-->3)-O-beta-D-glucopyranoside (2) and three new quercetin glycosides, quercetin 3-O-(2-E-caffeoyl)-alpha-L-arabinopyranosyl-(1-->2)-beta-D-galactopyranoside-7-O-beta-d-glucopyranoside (3), quercetin 3-O-(2-E-caffeoyl)-alpha-L-arabinopyranosyl-(1-->2)-beta-D-galactopyranoside (4), and quercetin 3-O-alpha-L-arabinopyranosyl-(1-->2)-beta-D-galactopyranoside (5). The structures of the new compounds were determined by spectroscopic analysis, including 2D NMR data and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号