首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New and simple human immunodeficiency virus type 1 (HIV-1) protease expression methods in Escherichia coli were developed using the T7 phage promoter system. In order to suppress leaky HIV-1 protease expression under the control of the T7 polymerase, two new methods were tested. One involved the introduction of supplementary T7 promoter regions into host cells [E. coli BL-21(DE3)] containing the HIV-1 protease gene under the control of the T7 promoter. It was expected that the supplementary T7 promoter regions would compete with the HIV-1 protease expression vector for the T7 polymerase binding. The other involved the infection of late-log-phase cultures of E.␣coli JM109 harboring the same HIV-1 protease expression vector with the M13 phage expressing T7 polymerase. Both methods were effective, and transformants with the mature HIV-1 protease expression vector showed ten times higher HIV-1 protease activity than activities obtained with the autoprocessing vector. The expression systems described here are convenient and are also easily applicable for the expression of other proteins toxic for E. coli. Received: 5 September 1996 / Received last revision: 1 November 1996 / Accepted: 15 November 1996  相似文献   

2.
By polymerase chain reaction mutagenesis techniques, an NdeI restriction site was introduced at the initiation codon of the mannitol dehydrogenase (MDH) gene (mtlK) of Rhodobacter sphaeroides Si4. The mtlK gene was then subcloned from plasmid pAK74 into the NdeI site of the overexpression vector pET24a+ to give plasmid pASFG1. Plasmid pASFG1 was introduced into Escherichia coli BL21(DE3), which was grown in a 1.5-l bioreactor at 37 °C and pH 7.0. Overexpression of MDH in Escherichia coli BL21(DE3) [pASFG1] was determined by enzymatic analysis and sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis. Under standard growth conditions, E. coli produced considerable amounts of a polypeptide that correlated with MDH in SDS gels, but the activity yield was low. Decreasing the growth temperature to 27 °C and omitting pH regulation resulted in a significant increase in the formation of soluble and enzymatically active MDH up to a specific activity of 12.4 U/mg protein and a yield of 26 000 U/l, which corresponds to 0.38 g/l MDH. This was an 87-fold overexpression of MDH compared to that of the natural host R. sphaeroides Si4, and a 236-fold improvement of the volumetric yield. MDH was purified from E. coli BL21(DE3) [pASFG1] with 67% recovery, using ammo-nium sulfate precipitation, hydrophobic interaction chromatography, and gel filtration. Partial characterization of the recombinant MDH revealed no significant differences to the wild-type enzyme. Received: 18 February 1997 / Received revision: 27 March 1997 / Accepted: 27 March 1997  相似文献   

3.
Strains of the fission yeast Schizosaccharomyces pombe have been constructed containing single or multiple chromosomally integrated copies of an expression cassette for production of human gastric lipase. Integrant strains of S. pombe secrete active lipase and are stable for lipase production over a minimum of 50 generations in non-selective media. Lipase activity levels for integrant strains containing up to three tandem copies of the expression cassette are strongly correlated with copy number of the cassette in both complete and minimal media. Lipase activity is higher in complete medium than in minimal medium. Strains carrying three chromosomally integrated expression cassette copies can be grown without selection in complete medium and are capable of significantly higher lipase activities than strains containing the expression cassette on a multicopy plasmid. Received: 27 March 1997 / Received revision: 13 August 1997 / Accepted: 25 August 1997  相似文献   

4.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

5.
New secretion vectors containing the Bacillus sp. endoxylanase signal sequence were constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli alkaline phosphatase structural gene fused to the endoxylanase signal sequence was expressed from the trc promoter in various E. coli strains by induction with IPTG. Among those tested, E. coli HB101 showed the highest efficiency of secretion (up to 25.3% of total proteins). When cells were induced with 1 mM IPTG, most of the secreted alkaline phosphatase formed inclusion bodies in the periplasm. However, alkaline phosphatase could be produced as a soluble form without reduction of expression level by inducing with less (0.01 mM) IPTG, and greater than 90% of alkaline phosphatase could be recovered from the periplasm by the simple osmotic shock method. Fed-batch cultures were carried out to examine the possibility of secretory protein production at high cell density. Up to 5.2 g/l soluble alkaline phosphatase could be produced in the periplasm by the pH-stat fed-batch cultivation of E. coli HB101 harboring pTrcS1PhoA. These results demonstrate the possibility of efficient secretory production of recombinant proteins in E. coli by high cell density cultivation. Received: 8 September 1999 / Received revision: 3 January 2000 / Accepted 4 January 2000  相似文献   

6.
The Tn5-based transposon Tn5-KIL3 (Miksch et al. 1997c) bearing the kil gene of the ColE1 plasmid of Escherichia coli, which mediates controlled export of periplasmic proteins into the culture medium, was stably integrated into the chromosome of Klebsiella planticola with high transposition frequency. A Bacillus hybrid β-glucanase located on an RSF1010-derived plasmid was mobilized from E.coli to K. planticola and used as a reporter protein to select strains with high expression and secretion competence. During fermentation experiments it was shown that the production of β-glucanase in K. planticola was improved to an unexpectedly high level when the enzyme was secreted into the medium. Due to the stationary-phase promoter used for the expression of the kil gene the secretion of β-glucanase into the medium started at the transition from the exponential to the stationary phase, as in E. coli, and the fraction of secreted protein reached 90%. The results showed that K. planticola may represent an interesting organism for the production of heterologous proteins. Received: 22 July 1998 / Received revision: 25 November 1998 / Accepted: 29 November 1998  相似文献   

7.
Outer membrane protein A (OmpA) is a component of the outer membrane of Edwardsiella tarda and is wildly distributed in Enterobacteriaceae family. The gene encoding the OmpA protein was cloned from E. tarda and expressed in Escherichia coli M15 cells. The recombinant OmpA protein containing His6 residues was estimated to have a molecular weight of ∼38 kDa. In Western blot the native protein showed expression at ∼36 kDa molecular weight which was within the range of major outer membrane proteins (36–44 kDa) observed in this study. All E. tarda isolates tested harbored the ompA gene and the antibody raised to this protein was seen to cross react with other Gram negative bacteria. The OmpA protein characterized in this study was observed to be highly immunogenic in both rabbit and fish. In Enzyme linked immunosorbent assay, rabbit antisera showed an antibody titer of 1: 128,000. Common carp vaccinated with recombinant OmpA protein elicited high antibody production and immunized fish showed a relative percentage survival of 54.3 on challenge.  相似文献   

8.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   

9.
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (cat GC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 × 10−7 and 4.7 × 10−7 transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H.␣pylori recipients, with pHel2 showing an efficiency of 2.0 × 10−5 transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylorirecA + gene, and the expression of the heterologous green fluorescent protein (GFP) in H.␣pylori demonstrate the general usefulness of␣this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future. Received: 22 April 1997 / Accepted: 4 November 1997  相似文献   

10.
A gene library from the thermophilic eubacterium Rhodothermus marinus, strain ITI 378, was constructed in pUC18 and transformed into Escherichia coli. Of 5400 transformants, 3 were active on carboxymethylcellulose. Three plasmids conferring cellulase activity were purified and were all found to contain the same cellulase gene, celA. The open reading frame for the celA gene is 780 base pairs and encodes a protein of 260 amino acids with a calculated molecular mass of 28.8 kDa. The amino acid sequence shows homology with cellulases in glycosyl hydrolase family 12. The celA gene was overexpressed in E. coli when the pET23, T7 phage RNA polymerase system was used. The enzyme showed activity on carboxymethylcellulose and lichenan, but not on birch xylan or laminarin. The expressed enzyme had six terminal histidine residues and was purified by using a nickel nitrilotriacetate column. The enzyme had a pH optimum of 6–7 and its highest measured initial activity at 100 °C. The heat stability of the enzyme was increased by removal of the histidine residues. It then retained 75% of its activity after 8 h at 90 °C. Received: 5 August 1997 / Received revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

11.
We previously showed that infection of human monocytic U937 cells with nonpathogenic Escherichia coli (E. coli) induced rapid apoptosis in a dose- and time-dependent manner. We also found that E. coli increase p38 mitogen-activated protein Kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), and decrease extracellular-Regulated Kinase1/2 (ERK1/2) phosphorylation and increase caspase-3 and -9 activity in U937 cells. The current study determines if Bcl-2, Bax, the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor kappa B (NF-κB) regulates E. coli–induced U937 cell apoptosis. Studying the underlying mechanisms we found that the E. coli-induced apoptosis in U937 cells was associated with a more prominent reduction in expression of Bcl-2, levels of P-Akt and NF-κB. Because levels of inhibition of apoptosis protein (cIAP), and X-chromosomelinked inhibitor of apoptosis protein (XIAP) are regulated by NF-κB, E. coli decreased the levels of these proteins in U937 cells through inhibition of NF-κB. Moreover, E. coli markedly elevated Bax expression and cytochrome c redistribution. LY294002, PDTC and Embelin, specific inhibitors of PI3K, NF-κB and XIAP, induced U937 cell apoptosis and the apoptosis is dependent on activity of caspase-3 and -9 in E. coli-treated U937 cells. Through using LY294002 and western blotting, we identified NF-κB was the downstream Akt target regulated by E. coli. Taken together, these results clearly indicate reduced activation of NF-κB via impaired PI3K/Akt activation could result in increased apoptosis of U937 cells infected by E. coli. Moreover, E. coli can induce apoptosis with an increased expression of Bax and a reduced expression of Bcl-2, which resulted in increased levels of cytochrome c release and increase caspase-3 and -9 in U937 cells.  相似文献   

12.
The Ustilago maydis lipase UM03410 belongs to the mostly unexplored Candida antarctica lipase (CAL-A) subfamily. The two lipases with […] the highest identity are a lipase from Sporisorium reilianum and the prototypic CAL-A. In contrast to the other CAL-A-type lipases, this hypothetical U. maydis lipase is annotated to possess a prolonged N-terminus of unknown function. Here, we show for the first time the recombinant expression of two versions of lipase UM03410: the full-length form (lipUMf) and an N-terminally truncated form (lipUMs). For comparison to the prototype, the expression of recombinant CAL-A in E. coli was investigated. Although both forms of lipase UM03410 could be expressed functionally in E. coli, the N-terminally truncated form (lipUMs) demonstrated significantly higher activities towards p-nitrophenyl esters. The functional expression of the N-terminally truncated lipase was further optimized by the appropriate choice of the E. coli strain, lowering the cultivation temperature to 20 °C and enrichment of the cultivation medium with glucose. Primary characteristics of the recombinant lipase are its pH optimum in the range of 6.5–7.0 and its temperature optimum at 55 °C. As is typical for lipases, lipUM03410 shows preference for long chain fatty acid esters with myristic acid ester (C14:0 ester) being the most preferred one. More importantly, lipUMs exhibits an inherent preference for C18:1Δ9 trans and C18:1Δ11 trans-fatty acid esters similar to CAL-A. Therefore, the short form of this U. maydis lipase is the only other currently known lipase with a distinct trans-fatty acid selectivity.  相似文献   

13.
Contamination of foods with pathogens such as Escherichia coli O157:H7 and Salmonella is a major concern worldwide and rapid, sensitive, and reliable methods are needed for detection of these organisms. Since these pathogens can contaminate similar foods and other types of samples, a multiplex polymerase chain reduction (PCR) was designed to allow simultaneous detection of both E. coli O157:H7 and Salmonella spp directly from enrichment cultures. Samples of apple cider, beef carcass wash water, ground beef, and bovine feces were inoculated with both E. coli O157:H7 and S. typhimurium at various bacterial levels. Following enrichment culturing for 20–24 h at 37°C in modified EC broth or buffered peptone water both containing novobiocin, the samples were subjected to a DNA extraction technique or to immunomagnetic separation then tested by the multiplex PCR assay. Four pairs of primers were employed in the PCR: primers for amplification of E. coli O157:H7 eaeA, stx 1/2 and plasmid sequences and for amplification of a portion of the Salmonella invA gene. Four fragments of the expected sizes were amplified in a single reaction and visualized following agarose gel electrophoresis in all the samples inoculated with ≤ 1 CFU g−1 or ml−1. Results can be obtained in approximately 30 h. The multiplex PCR is a potentially powerful technique for rapid and sensitive co-detection of both pathogens in foods and other types of samples. Received 28 December 1997/ Accepted in revised form 19 March 1998  相似文献   

14.
The gene dak1 encoding a dihydroxyacetone kinase (DHAK) isoenzyme I, one of two isoenzymes in the Schizosaccharomyces pombe IFO 0354 strain, was cloned and sequenced. The dak1 gene comprises 1743 bp and encodes a protein of 62 245 Da. The deduced amino acid sequence showed a similarity to a putative DHAK of Saccharomyces cerevisiae and DHAK of Citrobacter freundii. The dak1 gene was expressed at a high level in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The acetone powder of recombinant E. coli cells was used to produce dihydroxyacetone phosphate. Received: 25 August 1998 / Received revision: 22 September 1998 / Accepted: 11 October 1998  相似文献   

15.
To produce a large quantity of the angiotensin-converting-enzyme(ACE)-inhibiting peptide YG-1, which consists of ten amino acids derived from yeast glyceraldehyde-3-phosphate dehydrogenase, a high-level expression was explored with tandem multimers of the YG-1 gene in Escherichia coli. The genes encoding YG-1 were tandemly multimerized to 9-mers, 18-mers and 27-mers, in which each of the repeating units in the tandem multimers was connected to the neighboring genes by a DNA linker encoding Pro-Gly-Arg for the cleavage of multimers by clostripain. The multimers were cloned into the expression vector pET-21b, and expressed in E. coli BL21(DE3) with isopropyl β-d-thiogalactopyranoside induction. The expressed multimeric peptides encoded by the 9-mer, 18-mer and 27-mer accumulated intracellularly as inclusion bodies and comprised about 67%, 25% and 15% of the total proteins in E. coli respectively. The multimeric peptides expressed as inclusion bodies were cleaved with clostripain, and active monomers were purified to homogeneity by reversed-phase high-performance liquid chromatography. In total, 105 mg pure recombinant YG-1 was obtained from 1 l E. coli culture harboring pETYG9, which contained the 9-mer of the YG-1 gene. The recombinant YG-1 was identical to the natural YG-1 in molecular mass, amino acid sequence and ACE-inhibiting activity. Received: 6 January 1998 / Received revision: 23 February 1998 / Accepted: 24 February 1998  相似文献   

16.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

17.
Acinetobacter sp. XMZ-26 (ACCC 05422) was isolated from soil samples obtained from glaciers in Xinjiang Province, China. The partial nucleotide sequence of a lipase gene was obtained by touchdown PCR using degenerate primers designed based on the conserved domains of cold-adapted lipases. Subsequently, a complete gene sequence encoding a 317 amino acid polypeptide was identified. Our novel lipase gene, lipA, was overexpressed in Escherichia coli. The recombinant protein (LipA) was purified by Ni-affinity chromatography, and then deeply characterised. The LipA resulted to hydrolyse pNP esters of fatty acids with acyl chain length from C2 to C16, and the preferred substrate was pNP octanoate showing a k cat = 560.52 ± 28.32 s−1, K m = 0.075 ± 0.008 mM, and a k cat/K m = 7,377.29 ± 118.88 s−1 mM−1. Maximal LipA activity was observed at a temperature of 15°C and pH 10.0 using pNP decanoate as substrate. That LipA peaked at such a low temperature and remained most activity between 5°C and 35°C indicated that it was a cold-adapted enzyme. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents, including Ninol, Triton X-100, methanol, PEG-600, and DMSO. This cold-adapted lipase may find applications in the detergent industry and organic synthesis.  相似文献   

18.
Carotenoids are of great commercial interest and attempts are made to produce different carotenoids in transgenic bacteria and yeasts. Development of appropriate systems and optimization of carotenoid yield involves transformation with several new genes on suitable plasmids. Therefore, the non-carotenogenic bacterium Escherichia coli JM101 was transformed in our study with several genes that mediated the biosynthetic production of the carotenoid zeaxanthin in this host. Selection of plasmids for the introduction of five essential genes for zeaxanthin formation showed that a pACYC-derived plasmid was the best. Multiplasmid transformation generally decreased production of zeaxanthin. By cotransformation with different plasmids, limitations in the biosynthetic pathway were found at the level of geranylgeranyl-pyrophosphate synthase and β-carotene hydroxylase. In our study a maximum zeaxanthin content of 289 μg/g dry weight was obtained. This involved the construction of a plasmid that mediated high-level expression of β-carotene hydroxylase. The level of expression was demonstrated on protein gels and solubilization by the mild detergent Brij 78 revealed that a significant portion of the expressed enzyme is located in the E. coli membranes where it can exert its catalytic function. Based on the results obtained, new strategies for vector construction and strain selection were proposed which could increase the present concentrations drastically. Optimal growth conditions of the transfomed E. coli strains for carotenoid formation were found at a temperature of 28 °C and a cultivation period of 2 days. Received: 28 November 1996 / Received revision: 24 March 1997 / Accepted: 27 April 1997  相似文献   

19.
A Bacillus megaterium genomic fragment, which encoded an activator homologous to σ54 regulators and which was capable of activating Escherichia coli ato genes in trans, was detected in a gene library of B.␣megaterium screened for β-ketothiolase activity. The fragment presented only one complete open reading frame (ORF1), which encoded a protein of 398 amino acids. The recombinant plasmid complemented mutations in the Escherichia coli atoC regulatory gene. The constitutive expression of the E. coli ato operon mediated by ORF1 could be useful for the synthesis of polyhydroxyalkanoates with different flexibility properties by recombinant E. coli strains. Received: 20 October 1997 / Received revision: 18 February 1998 / Accepted: 23 February 1998  相似文献   

20.
Escherichia coli strains that did not have the ability to use sucrose as a sole carbon source gained this ability after receiving a cloned fragment of DNA from Agrobacterium tumefaciens. No invertase was detected in the sucrose-metabolizing E. coli, but evidence for the activity of certain enzymes, known to be produced by biotype 1 strains of Agrobacterium, were found. Evidence was found for the presence of d-glucoside 3-dehydrogenase (G3DH) and α-3-ketoglucosidase. The activity of enzyme extracts on 3-ketosucrose also indicated that 3-ketoglucose reductase, or some enzyme that acts on 3-ketoglucose, was present in the Suc+ E. coli as well. The fragment was found to complement a G3DH mutant of A. tumefaciens and was also found to confer chemotaxis towards sucrose in E. coli. Received: 13 September 1996 / Received revision: 15 January 1997 / Accepted: 24 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号