首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
量子点表面经生物分子或药物分子修饰而具有生物功能.功能化量子点具有独特的光学性质和生物相容性,在生物医学光学诊断和治疗领域具有广泛的应用.本文简要介绍了功能化量子点制备及修饰方法,综合评述了量子点在肿瘤活体诊断和治疗中的应用,包括活体淋巴结成像、血管动态成像、肿瘤成像和抗肿瘤药物示踪等,讨论了功能化量子点在肿瘤活体诊断和治疗中的应用前景以及面临的挑战.  相似文献   

2.
由于具有优异的光学特性,量子点在生物医学领域内的研究和应用取得了一些有意义的进展,同时也引起了新药开发人员的兴趣.本文概述了量子点在新药开发中所具有的优势,分析了量子点在药物传输、药物筛选和药靶确证方面的潜在应用,进一步讨论了当前量子点应用于新药开发存在的问题和不足.  相似文献   

3.
纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料是纳米技术发展的重要基础,它具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。对几类常见的纳米材料包括纳米金、量子点、磁性纳米粒子、碳纳米管和硅纳米线在蛋白质、DNA、金属离子以及生物相关分子检测方面的应用进行综述。  相似文献   

4.
目的:探究Cd Te/Cd S/Zn S的生物相容性,减少量子点在生物医学方面应用时的毒性影响。方法:培养肺腺癌细胞A549,急性T淋巴细胞白血病细胞CEM。Cd Te/Cd S/Zn S量子点与Cd Te/Cd S量子点分别与所培养细胞孵育后,CCK-8法测定细胞生存情况。结论:Cd Te/Cd S/Zn S双层外壳量子点能够显著减少量子点的细胞毒性,提高量子点生物相容性。  相似文献   

5.
刘庆华  余亮  熊建文 《激光生物学报》2008,17(1):138-142,F0003
概述了现存的主要量子点的构成及其特点,阐述了量子点的性质主要由量子点的成分、结构、包覆和尺寸所决定。并重点讨论量子点在光动力疗法中,量子点直接代替传统光敏剂、量子点的荧光共振能量转移、量子点作为宽禁带半导体材料TiO2的敏化剂等三种不同应用中,对量子点的要求,通过讨论指出由于其特性,量子点将在光动力疗法中得到更广泛的应用,也对在光动力疗法中应用的量子点的毒性及其他可能产生的问题提出了展望。  相似文献   

6.
含镉量子点是典型的量子点,近年来受到广泛研究。含镉量子点的潜在毒性是其在生物成像及生物医药方面应用和发展的关键制约因素,因此,对其毒性作用的研究具有重要意义。目前对含镉量子点的体外毒性研究主要集中在人肝癌细胞(HepG2)、神经分泌细胞(PC12)等细胞实验及斑马鱼胚胎体外培养实验。体内毒性研究包括小鼠等动物实验。这些研究证实,量子点对HepG2等细胞系和小鼠、贻贝等动物均具细胞毒性。研究者们普遍认为,量子点是通过释放其组成中的重金属,诱导生物体产生活性氧自由基,进而引发细胞凋亡或自噬,但对量子点的具体毒性作用机制并不完全清楚。该文对含镉量子点的体内和体外毒性研究工作进展进行了综述,包括含镉量子点对肝肾细胞、神经细胞、血液细胞及免疫细胞等体外毒性研究工作,对陆生及水生动物等的体内毒性研究工作,旨在更好、更全面地评估含镉量子点的毒性,为今后对量子点的毒性作用机制研究提供方向,促进含镉量子点在生物医学方面的发展和应用。  相似文献   

7.
半导体量子点具有长时间、多目标和灵敏度高等独特的光化学性质,这些特性使量子点成为细胞标记和生物应用中得到了广泛的应用。利用量子点目标定位癌细胞,对于寻找癌变部位具有指导的作用。近年来,利用量子点作为光动力学治疗癌症的能量供体也得到了一定的研究。简单地介绍了量子点独特的光学性质,并从量子点标记癌细胞、可视化癌细胞表面功能和在光动力学治疗癌症等方面综述了量子点在癌症诊断和治疗中的应用。  相似文献   

8.
量子点荧光标记技术的研究热点及面临的挑战   总被引:1,自引:1,他引:1  
半导体量子点作为新型荧光标记物,在生物医学领域具有重要应用.与传统的有机染料及荧光蛋白等荧光标记物相比,半导体量子点具有发光颜色可调、激发范围宽、发射光谱窄、化学及光稳定性好、表面化学丰富以及生物偶联技术成熟等诸多优势,为生命体系的靶向示踪,高灵敏、原位、实时、动态荧光成像,DNA及蛋白质检测,靶向药物,临床医学,生物芯片和传感器等研究提供了新的发展契机.基于作者在半导体量子点生物荧光成像和安全性评价研究的基础,综述了半导体量子点荧光标记物在生命科学与医学领域应用的研究热点,并对半导体量子点荧光标记技术走向实用面临的挑战进行了评述.  相似文献   

9.
纳米技术在生物医学的进展使其在肿瘤的诊治中应用日益广泛。荧光纳米粒子中的量子点(Quantum Dots),具备光学成像特性在肿瘤中应用中显示出独特的优势。其作为一种荧光半导体纳米粒子,具有荧光强度高、稳定性强、激发波谱宽、发射波谱窄等光学特性。同时,它可以结合其他功能基团,包括靶向模式、治疗因素和成像探针,为临床肿瘤诊断和治疗提供了新的潜力。本文就量子点的类型和特点及量子点的肿瘤体外和体内成像进行综述。  相似文献   

10.
量子点是一种具有独特光学性质的半导体纳米材料,表面带有功能基团的水溶性量子点可与抗体偶联,作为荧光探针用于多种生物学研究。根据量子点表面所修饰的物质不同,偶联方法可分为共价偶联与非公价偶联两大类。本研究主要对量子点与抗体的偶联方法进行简单介绍。  相似文献   

11.
Quantum dots are the nanoparticles that are recently emerging as an alternative to organic fluorescence probes in cell biology and biomedicine, and have several predictive advantages. These include their ⑴broad absorption spectra allowing visualization with single light source, ⑵exceptional photo-stability allowing long term studies and ⑶narrow and symmetrical emission spectrum that is controlled by their size and material composition. These unique properties allow simultaneous excitation of different size of quantum dots with a single excitation light source, their simultaneous resolution and visualization as different colors. At present there are only a few studies that have tested quantum dots in cellular imaging. We describe here the use of quantum dots in mortalin imaging of normal and cancer cells. Mortalin staining pattern with quantum dots in both normal and cancer cells mimicked those obtained with organic florescence probes and were considerably stable.  相似文献   

12.
A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe.  相似文献   

13.
Core/shell quantum dots (CdSe/Zns) conjugated with various nuclear localization signaling (NLS) peptides, which could facilitate the transportation of quantum dots across the plasma membrane into the nucleus, have been utilized to investigate the uptake mechanism of targeted delivery. Because of their brightness and photostability, it was possible to trace the trajectories of individual quantum dots in living cells using both confocal and total internal reflection microscopes. We found that, when the quantum dots were added to a cell culture, the peptide-coated quantum dots entered the cell nucleus while the uncoated quantum dots remained in the cytoplasm. At 8 nM, most of the peptide coated quantum dots were found in the cytoplasm due to aggregation. However, at a lower concentration (0.08 nM), approximately 25% of the NLS peptide-coated quantum dots entered the cell nucleus. We also found that some quantum dots without NLS coating could also enter the nucleus, suggesting that the size of the quantum dots may play an important role in such a process.  相似文献   

14.
Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.  相似文献   

15.
In this work we explored the potential of quantum dots for fluorescent detection of lymphoid surface antigens. To optimize detection with quantum dots, we upgraded a fluorescent microscope that allowed us obtaining multiple images from different quantum dots on a single section. Specimens stained with quantum dots remained stable over two weeks and practically did not bleach under the mercury lamp during scores of minutes. Double staining of frozen sections with direct conjugates of quantum dots with primary mouse monoclonal antibodies demonstrated direct conjugate high specificity and sensitivity. High stability of quantum dots’ fluorescence allows their use in diagnostics to analyze antigen coexpression on lymphoid tissue sections. “Spillover” of fluorescent signals from quantum dots into adjacent fluorescent channels maximally separated by 40 nm did not exceed 8%, which renders spectral compensation unnecessary.  相似文献   

16.
Conventional quantum dots have great potential in cancer-related imaging and diagnostic applications; however, these applications are limited by concerns about the inherent toxicity of their core materials (e.g., cadmium, lead). Virtually all imaging applications require conjugation of the imaging agent to a biologically active molecule to achieve selective uptake or binding. Here, we report a study of biocompatible silicon quantum dots covalently attached to biomolecules including lysine, folate, antimesothelin, and transferrin. The particles possess desirable physical properties, surface chemistry, and optical properties. Folate- and antimesothelin-conjugated silicon quantum dots show selective uptake into Panc-1 cells. This study contributes to the preclinical evaluation of silicon quantum dots and further demonstrates their potential as an imaging agent for cancer applications.  相似文献   

17.
Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells. A binding strategy based on a very specific non-covalent interaction between two proteins, barnase and barstar, was used to connect quantum dots and the targeting antibodies. Such a strategy allows combining the targeting and visualization functions simply by varying the corresponding modules of the fluorescent complex.  相似文献   

18.
Semiconductor quantum dots are inorganic fluorescent nanocrystals that, because of their unique optical properties compared with those of organic fluorophores, have become popular as fluorescent imaging probes. Although external light excitation is typically required for imaging with quantum dots, a new type of quantum dot conjugate has been reported that can luminesce with no need for external excitation. These self-illuminating quantum dot conjugates can be prepared by coupling of commercially available carboxylate-presenting quantum dots to the light-emitting protein Renilla luciferase. When the conjugates are exposed to the luciferase's substrate coelenterazine, the energy released by substrate catabolism is transferred to the quantum dots through bioluminescence resonance energy transfer, leading to quantum dot light emission. This protocol describes step-by-step procedures for the preparation and characterization of these self-illuminating quantum dot conjugates. The preparation process is relatively simple and can be done in less than 2 hours. The availability of self-illuminating quantum dot conjugates will provide many new possibilities for in vivo imaging and detection, such as monitoring of in vivo cell trafficking, multiplex bioluminescence imaging and new quantum dot-based biosensors.  相似文献   

19.
Quantum dots are semiconducting nanoparticles that can be prepared with interesting optical properties. The fluorescent properties of quantum dots are one of the key advantages for their use as optical labels for biorecognition events and biocatalytic processes. We have prepared semiconductor quantum dots conjugated with Nile Blue (NB), and demonstrate that NB-functionalized quantum dots can act as versatile probes to analyze different biocatalyzed transformations, and can be used for the quantitative detection of NADPH as well as NADH. This approach provides a new path for the optical detection of NAD(P)H and for the quantitative analysis of NAD(P)(+)-dependent biotransformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号