首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用谷氨酸棒杆菌S9114和枯草芽胞杆菌NTG-4在10 L自控发酵罐上进行混菌发酵,探索混菌发酵生产γ-聚谷氨酸的可行性并进行工艺优化。结果表明:温度、接种量、pH及溶氧对聚谷氨酸发酵有较大影响,发酵前期维持32℃,6 h提温至37℃变温控制,谷氨酸棒杆菌和枯草芽胞杆菌接种量分别为5%和0.5%,pH 7.0,溶氧20%最有利于γ-聚谷氨酸发酵,在此条件下发酵32 hγ-聚谷氨酸最高产量为38.3 g/L。  相似文献   

2.
陈升宝  王丽敏  于波 《微生物学报》2022,62(7):2796-2807
【背景】不同分子量的γ-聚谷氨酸在农业、化妆品和医药领域具有重要的应用价值,开发不同分子量γ-聚谷氨酸的生物合成工艺已成为研究热点。【目的】在γ-聚谷氨酸生产菌株枯草芽孢杆菌(Bacillus subtilis) KH2中实现不同分子量γ-聚谷氨酸的合成。【方法】分别克隆表达不同来源的水解酶,包括B.subtilis来源的γ-聚谷氨酸水解酶PgdS和YwtE,以及地衣芽孢杆菌来源的SGH。研究不同来源水解酶对B. subtilis KH2产γ-聚谷氨酸分子量的影响。通过改变水解酶处理条件获得不同分子量γ-聚谷氨酸的生物合成工艺。【结果】PgdS、YwtE和SGH均可降低γ-聚谷氨酸的分子量,其中PgdS水解效果最好,可以将γ-聚谷氨酸分子量由原来的1 600 kDa降低为180 kDa。通过优化PgdS的添加量与添加时间,在B. subtilis KH2中获得了分子量为210–600 kDa的γ-聚谷氨酸。【结论】利用水解酶处理,可以在B. subtilis KH2中实现不同分子量γ-聚谷氨酸的生物合成。该方法反应条件温和、分子量可控区间宽,具有良好的应用前景。  相似文献   

3.
γ-聚谷氨酸生产菌的选育及培养条件研究   总被引:2,自引:0,他引:2  
从土壤中筛选分离到1株γ聚谷氨酸的生产菌株yt102,初步鉴定为枯草芽孢杆菌;以此为出发菌株采用紫外线(UV)、亚硝基胍(NTG)进行复合诱变,获得1株γ聚谷氨酸高产突变株,突变株连续传代10次,发酵性能稳定;通过单因素和正交试验确定培养基的最佳组成,在最优条件下,γ聚谷氨酸的平均产量可达28.5 g/L。  相似文献   

4.
聚γ-谷氨酸高产菌的选育与培养基优化   总被引:1,自引:0,他引:1  
利用合成培养基为筛选培养基,以枯草芽孢杆菌(Bacillus subtilis)B6-1为出发菌株,经过三轮紫外线诱变和一轮硫酸二乙酯诱变得到了聚γ-谷氨酸高产突变株枯草芽孢杆菌W003,摇瓶液体发酵的聚γ-谷氨酸产量由出发菌株的10.9 g/L提高到20.5 g/L.单因素实验结果表明,该菌产聚γ-谷氨酸的合适碳源为葡萄糖,氮源为硫酸铵.通过正交实验得到了优化的培养基配方,经36h液体发酵,聚γ-谷氨酸产量可达到45.3 g/L.  相似文献   

5.
在枯草芽孢杆菌HCUL-B115代谢网络和发酵特性研究的基础上,通过添加适量的氨基酸、有机酸和维生素对聚γ谷氨酸(γPGA)发酵进行合成代谢进行研究。结果发现,大部分添加物对聚γ谷氨酸的积累都有一定的影响,特别是L谷氨酸、L苯丙氨酸、L精氨酸、L天冬氨酸、L缬氨酸、延胡索酸、草酸、丙二酸、烟酸、维生素B6和抗坏血酸等添加物对菌株HCUL-B115合成聚γ谷氨酸有明显促进作用,添加后产率比不添加任何物质提高20%左右。从代谢层面上分析,这些添加物除了促进菌体自身生长之外,同时防止了菌体对各添加物的过量合成,强化了菌株HCUL-B115合成聚γ谷氨酸的代谢途径。  相似文献   

6.
枯草芽孢杆菌B53产聚γ-谷氨酸的絮凝特性   总被引:7,自引:0,他引:7  
枯草芽孢杆菌B53产聚γ-谷氨酸(γ-PGA)对高岭土、Ca(OH)2、Mg(OH)2表现出较强的絮凝活性,采用0.6 g/L的γ-PGA溶液对高岭土的絮凝活性可达到90%以上。K 、Fe2 、Mg2 及Ca2 具有明显的促絮凝作用,而Al3 、Fe3 则起削弱作用。CaCl2浓度超过2 g/L及介质溶液维持pH值中性都有利于γ-PGA提高絮凝活性。  相似文献   

7.
聚γ-谷氨酸(γ-PGA)是一种应用前景良好的生物高分子材料.通过构建含有α-淀粉酶(amyE)基因两端交换臂的整合载体pDG1730-vgb,将透明颤菌血红蛋白基因(vgb)整合到聚γ-谷氨酸生产菌株地衣芽胞杆菌(Bacillus licheniformis)WX-02染色体中,获得重组子M2.一氧化碳差光光谱结果验证M2中表达了有活性的血红蛋白,3 L发酵罐分批发酵结果显示M2的生物量比出发菌株WX-02提高了25.5%,γ-PGA产量提高了20%.  相似文献   

8.
枯草杆菌 SBS液体发酵联产血栓溶解酶和γ-聚谷氨酸   总被引:1,自引:0,他引:1  
【目的】利用枯草芽胞杆菌(Bacillus subtilis SBS)进行联产血栓溶解酶和γ-聚谷氨酸研究【方法】本研究以实验室自行分离的Bacillus subtilis SBS为出发菌株,进行了液体发酵,通过正交实验研究了碳、氮源对血栓溶解酶和γ-聚谷氨酸联产的影响,并运用多种检测方法对产物进行了鉴定。【结果】在未添加谷氨酸的培养基中合成了γ-聚谷氨酸,表明该菌是非谷氨酸依赖型菌。合成血栓溶解酶的合适碳、氮源分别是可溶性淀粉和大豆蛋白胨,合成γ-聚谷氨酸的合适碳、氮源分别是蔗糖和NH4Cl。【结论】以蔗糖和大豆蛋白胨、NH4Cl分别作为碳源和氮源进行血栓溶解酶和γ-聚谷氨酸的联产。在蔗糖 10 g/L、大豆蛋白胨 20 g/L、NH4Cl 8 g/L时,血栓溶解酶酶活为 265±25 IU/mL,γ-聚谷氨酸产量为1.183±0.015 g/L,均接近了单独合成时的水平。  相似文献   

9.
γ-聚谷氨酸发酵培养基的Plackett-Burman法优化   总被引:1,自引:0,他引:1  
以一株γ-聚谷氨酸高产菌——地衣芽孢杆菌GIM-P10为试验菌株,采用逐因子实验法确定γ-聚谷氨酸合成考察因素的参考范围,再采用Plackett-Burman设计法进行培养基的优化,10个实验因子中筛选到四个显著影响因子:柠檬酸、谷氨酸、K2HPO4和MgSO4·7H2O。另外,综合评价实验结果,表明γ-聚谷氨酸的产量与多糖含量呈负向关系,与细胞干重呈正向关系。利用Plackett-Burman设计法发酵产γ-聚谷氨酸可高达21.27g/L,为基础培养基的2倍以上。  相似文献   

10.
以产γ-聚谷氨酸(γ-PGA)枯草芽胞杆菌菌株SY-ND为出发菌株,采用新型常压室温等离子体技术对其进行诱变以期获得高产菌株,在诱变致死率为80%~98%的条件下,通过检测突变菌株发酵产γ-PGA的量,筛选得到一株高产菌株SY-ND-SFX029。通过正交试验优化得出最佳培养基条件为:蛋白胨8.0g·L-1、蔗糖45.0g·L-1、L-谷氨酸钠35.0g·L-1。依照该条件经过48h发酵,菌株SY-ND-SFX029的γ-PGA产量达35.3g·L-1,比出发菌株SY-ND的γ-PGA产量18.9g·L-1提高86.8%。  相似文献   

11.
γ-聚谷氨酸产生菌BLN-2的分离鉴定及固体发酵条件初探   总被引:2,自引:0,他引:2  
从豆制品中分离得到一株γ-聚谷氨酸(γ-PGA)产生茵BLN-2,通过对BLN-2的生理生化和16S rRNA系统发育特征进行分析鉴定,明确该菌株为枯草芽孢杆菌.以黄豆为基本培养物,对BLN-2的固体发酵条件进行了初步探索,结果表明,葡萄糖、果糖和NaNO3、KNO3分别为BLN-2的较适碳、氮源.正交试验结果表明,当向黄豆中添加的果糖终浓度为0.5%,葡萄糖、NaNO3及KNO3终浓度均为2.0%时,γ-PGA产量最高,为89.05 g/kg,比相同条件下基本对照黄豆培养物的产量(60 g/kg)高48.42%.  相似文献   

12.
γ-聚谷氨酸的性质与生产方法   总被引:13,自引:0,他引:13  
介绍了γ-聚谷氨酸的结构、理化性质及其用途。从国内外生产γ-聚谷氨酸的方法着手,综述了不同的合成方法以及各自的优缺点,重点介绍了微生物法合成γ-聚谷氨酸的途径,对新方法进行了展望。  相似文献   

13.
玉米原料高产γ-聚谷氨酸优良菌株的选育及发酵条件优化   总被引:1,自引:0,他引:1  
以实验室筛选到的一株枯草芽孢杆菌(Bacillus subtilis)B-1为出发菌株,采用紫外诱变技术对出发菌株进行反复诱变,得到一株能够利用玉米原料生产γ-聚谷氨酸的优良高产菌株B-115,摇瓶发酵γ-聚谷氨酸的产量由原菌株的12.5g/L提高到19.5g/L。再以该菌株为研究对象利用响应面法进行碳源、氮源、谷氨酸钠、金属离子等发酵条件的优化实验,经48h摇瓶发酵,γ-聚谷氨酸产量达到40.98g/ L。  相似文献   

14.
【背景】γ-聚谷氨酸(poly-γ-glutamic acid,γ-PGA)产生菌多为枯草芽孢杆菌(Bacillus subtilis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、地衣芽孢杆菌(Bacillus licheniformis)等,而暹罗芽孢杆菌(Bacillus siamensis)相关研究较少。【目的】研究暹罗芽孢杆菌产γ-PGA的液体发酵条件。【方法】以自行分离的暹罗芽孢杆菌CAU83为出发菌株进行液体发酵,通过单因素试验和正交试验法研究了碳氮源、前体物质、发酵温度及pH对菌株生产γ-PGA的影响。【结果】经摇瓶优化,γ-PGA的最适碳源、氮源和前体物质分别为乳糖30g/L、酵母提取物5g/L和L-谷氨酸钠60 g/L,最适培养条件为发酵温度37℃和pH 7.0,γ-PGA产量由8.4 g/L提升至30.1 g/L,比优化前提高了260%。经分批补料发酵,60 h时γ-PGA产量最高为59.5 g/L,比摇瓶提高了98%,产率为0.99 g/(L·h)。所产γ-PGA分子量为3.8×106 Da,聚合度较高。【结论】...  相似文献   

15.
一株γ-聚谷氨酸合成菌的筛选与鉴定   总被引:1,自引:0,他引:1  
从土壤中筛选分离获得一株γ-聚谷氨酸合成菌PGS-1,经鉴定为枯草芽孢杆菌(Bacillus subtilis),在富含谷氨酸和葡萄糖的培养基中可大量合成γ-聚谷氨酸,摇瓶发酵产量达26 g/L,不同于大多文献报道的微生物合成的γ-聚谷氨酸具有较高的分子量,该菌株合成的γ-聚谷氨酸分子量较低(3×105-4×105 kD),分子量分布较窄,可适用于低分子量要求的应用领域,如作为药物的控缓释载体,值得深入开发研究。  相似文献   

16.
生物絮凝剂γ-聚谷氨酸絮凝性能研究   总被引:9,自引:1,他引:9  
研究了枯草芽孢杆菌NX-2制备的生物絮凝剂γ-聚谷氨酸(γ-PGA)的絮凝活性。γ-PGA对高岭土、活性炭等悬浮液具有较高的絮凝活性,絮凝活性稳定,热稳定性好,用量高于10mg/L时适用pH范围宽,最适投加浓度为20mg/L,加入Ca^2 、Mg^2 、Fe^3 、Al^3 、Fe^2 、Na^ 等金属离子能不同程度增强γ-PGA的絮凝活性,其中Ca^2 助凝效果最高。使用Ca^2 作助凝离子可降低γ-PGA用量,但Ca^2 浓度过高会明显降低γ-PGA的絮凝活性。还研究了γ-PGA对电镀废水的处理效果,实验证明γ-PGA能有效降低电镀废水中Cr^ 3、Ni^ 2等离子的浓度。  相似文献   

17.
一株不需谷氨酸的产聚γ-谷氨酸菌株的筛选与鉴定   总被引:2,自引:0,他引:2  
从豆制品中分离得到17株不依赖谷氨酸作为发酵底物的γ-PGA生产菌株,分别以氨盐和葡萄糖作为氮源和碳源的培养基进行好氧发酵,并测定发酵液中PGA的含量,对其中一株PGA高产菌株PGA-O-7进行了形态、生理生化和遗传学研究,结果表明PGA-O-7为枯草芽孢杆菌(Bacillus subtilis)。在以葡萄糖为碳源、硫酸铵为氮源的发酵培养基中,30℃振荡培养3d,PGA产量可达到2.8mg/mL。  相似文献   

18.
一株γ-多聚谷氨酸生产菌的分离筛选与鉴定   总被引:1,自引:0,他引:1  
从菜园土壤中取样,在含有谷氨酸的筛选培养基上采用梯度稀释涂布、平板划线的方法,以菌落/菌液黏稠度为指示,分离筛选生产γ-多聚谷氨酸的菌株。利用氨基酸分析仪测定提取纯化后的γ-多聚谷氨酸的产量,并通过形态学、生理生化特征以及16S rDNA基因序列分析鉴定该菌株,并对其合成γ-多聚谷氨酸的功能基因进行PCR扩增。结果表明:筛选到1株产γ-多聚谷氨酸的细菌C1,其液体摇瓶发酵产量为18.4 g/L,相对分子质量为1.8×106;该菌株为革兰氏阳性,菌落黏稠、菌体呈杆状、产芽胞、且形成荚膜;主要生理生化特点为能利用葡萄糖和蔗糖发酵,水解淀粉,H2O2酶阳性,产吲哚等;经16S rDNA鉴定与Bacillus amyloliquefaciens ATCC23350同源性为100%,故命名为Bacillus amyloliquefaciens C1,且拥有γ-多聚谷氨酸合成的相关基因pgsA、pgsB和pgsC。  相似文献   

19.
以实验室自制的低相对分子质量γ-聚谷氨酸(LMPGA)为研究对象,系统研究其阻碳酸钙垢、硫酸钙垢性能及其相关影响因素。结果表明:LMPGA的平均相对分子质量在5.0×103和7.0×103时,具有相近的阻碳酸钙垢性能,且在药剂投加质量浓度达到20 mg/L时,阻垢率可达88%左右;随着Ca2+浓度、pH值、恒温温度及恒温时间的增加,其阻碳酸钙垢性能发生下降;LMPGA是一种优良的硫酸钙阻垢剂,在药剂投加质量浓度达10 mg/L时,其硫酸钙阻垢率可达90%以上。  相似文献   

20.
γ-聚谷氨酸水凝胶研究与应用进展   总被引:1,自引:0,他引:1  
主要介绍了一种集吸水性能、保水性能、环境友好性于一身的高分子材料γ-聚谷氨酸水凝胶的研究现状及发展前景,分别从γ-聚谷氨酸水凝胶、γ-聚谷氨酸与其他物质复合水凝胶的合成以及γ-聚谷氨酸类水凝胶的应用三方面进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号