首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the regulation of the biosynthesis of thyrotropin (TSH) and its alpha and beta subunits by thyroid hormone in thyrotropic tumors carried in hypothyroid mice. Treatment with 3,5,3'-triiodo-L-thyronine (T3) (20 micrograms/100 g, body weight) daily for 4 or 10 days reduced serum TSH to 3 and 0.3% of control, respectively. Serum levels of free alpha subunit were reduced to 60 and 11% of control at 4 days and 10 days, respectively, and serum free TSH-beta was undetectable at both time points. There was no significant decrease in tumor TSH content after 4 days of treatment and, after 10 days, TSH content was reduced to 15% of control levels. There was no significant effect of T3 on tumor alpha subunit levels at either 4 or 10 days. In contrast, tumor TSH-beta content was markedly reduced after 4 days and 10 days of T3 treatment, to 29 and 10% of control levels, respectively. Translation of tumor poly(A) mRNA in a rabbit reticulocyte lysate system showed that thyroid hormone decreased translatable TSH-beta mRNA to undetectable levels at both 4 and 10 days, whereas translatable alpha mRNA was reduced strikingly only at 10 days in one of two tumors. RNA blot hybridization with 32P-labeled plasmid probes containing alpha or TSH-beta cDNAs showed that TSH-beta mRNA was reduced to less than 10% of control after both 4 and 10 days of T3 treatment, whereas, again, alpha mRNA was only reduced in one of two tumors at 10 days. Our data thus show that thyroid hormone affects alpha and TSH-beta mRNA and protein levels discordantly and suggest that regulation of TSH biosynthesis may occur predominantly at the level of TSH-beta mRNA.  相似文献   

2.
3.
In two patients with congenital isolated thyrotropin (TSH) deficiency, serum TSH determined by a sensitive immunoradiometric assay (IRMA) was consistently undetectable. The basal levels of serum free TSH-alpha subunit (TSH-alpha) determined by a specific radioimmunoassay (RIA) were elevated in the hypothyroid state, and decreased to the undectable level during displacement therapy with thyroid hormone. The serum free TSH-alpha significantly increased following intravenous administration of thyrotropin releasing hormone (TRH). Serum free TSH-beta subunit (TSH-beta) was undectable. These findings suggest that TSH deficiency in this disease is not due to absence of thyrotroph in the pituitary gland or deficiency of TSH-alpha, but to abnormalities of the TSH-beta gene.  相似文献   

4.
Thyrotropin (TSH), a glycoprotein hormone of the pituitary consisting of two subunits (alpha and beta), regulates thyroxine (T4) production by the thyroid gland. T4, in turn, regulates TSH biosynthesis and release. We have studied the regulation of the messenger RNA encoding the alpha subunit of TSH by T4 in pituitaries and in a transplantable thyrotropic tumor in mice. Hypothyroid male LAF1 mice bearing the TtT 97 thyrotropic tumor were injected daily with T4 for either 0, 1, 5, 12, or 33 days. Levels of TSH and its unassociated alpha (free alpha) and TSH-beta subunits in the plasma of these animals fell to less than 5% of control values after 33 days. Concentrations of TSH and TSH-beta in both tumor and pituitary also fell to low levels (less than 2% of control), while intracellular concentrations of free alpha subunit remained unchanged. Cellular levels of the mRNA encoding the precursor of the alpha subunit or pre-alpha (alpha mRNA) were measured by cell-free translation followed by electrophoretic analysis of immunoprecipitates of pre-alpha subunit and by nucleic acid hybridization to a radiolabeled cDNA probe specific for the alpha mRNA. In the pituitary, translatable and hybridizable alpha mRNA was decreased slightly after 1 day of T4 and decreased 40-50% after 5 and 12 days. In thyrotropic tumors, both translatable and total alpha mRNA showed a 60% decrease by 1 day and a maximum 85% decrease after 5, 12, and 33 days of T4. Therefore, T4 acts rapidly in vivo to decrease steady state alpha mRNA levels in the thyrotrope, and this decrease is maintained for the duration of treatment with thyroid hormone. This regulatory process is reflected in the sharp decreases in levels of TSH and free alpha subunit in plasma and in lower concentrations of the intact TSH in tissue. In contrast, the maintenance of high tissue concentrations of free alpha subunit after T4 treatment may be a reflection of alterations in a post-translational process specific for the free alpha subunit, as opposed to that of the intact TSH.  相似文献   

5.
Thyroid hormones, T4 and T3, regulate their own production by feedback inhibition of TSH and TRH synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) that interact with the promoters of the genes for the TSH subunit and TRH. All TR isoforms are believed to be involved in the regulation of this endocrine axis, as evidenced by the massive dysregulation of TSH production in mice lacking all TR isoforms. However, the relative contributions of TR isoforms in the pituitary vs. the hypothalamus remain to be completely elucidated. Thus, to determine the relative contribution of pituitary expression of TR-alpha in the regulation of the hypothalamic-pituitary-thyroid axis, we selectively impaired TR-alpha function in TR-beta null mice (TR-beta-/-) by pituitary restricted expression of a dominant negative TR-beta transgene harboring a delta337T mutation. These animals exhibited 10-fold and 32-fold increase in T4 and TSH concentrations, respectively. Moreover, the negative regulation of TSH by exogenous T3 was completely absent and a paradoxical increase in TSH concentrations and TSH-beta mRNA was observed. In contrast, prepro-TRH expression levels in T3-treated TR-beta-/- were similar to levels observed in the delta337/TR-beta-/- mice, and ligand-independent activation of TSH in hypothyroid mice was equivalently impaired. Thus, isolated TR-beta deficiency in TRH paraventricular hypothalamic nucleus neurons and impaired function of all TRs in the pituitary recapitulate the baseline hormonal disturbances that characterize mice with complete absence of all TRs.  相似文献   

6.
7.
Studies were conducted to determine if brief exposure, in utero, to high levels of T4 or to the synthetic thyromimetic agent 3,5-dimethyl-3'-isopropyl-L-thyronine (DIMIT) can produce permanent disruption of the thyroid control system in a manner analogous to the changes in the "set point" reported to occur due to neonatal T4 exposure in the "neo-T4 syndrome". If such a change were to occur, it could explain the persistent thyroid disturbances seen in the progeny of hypothyroid mother rats. These latter progeny are exposed in utero to both low and high serum T4 levels. Maternal T4 treatment produced a 4-fold elevation in fetal serum T4 accompanied by a large decrease in serum TSH levels. The brief treatment in utero with high doses of T4 or of DIMIT resulted in higher neonatal mortality and the T4-treatment produce subsequent growth stunting. These treatments resulted in suppression of the fetal/neonatal thyroid which was very apparent at 5 days of age. At 30 days post-partum, the thyroid control system of the progeny of the T4 and DIMIT-treated animals was still abnormal with low serum T4 levels accompanied with normal serum TSH and T3 levels. At 60 days of age, serum T4 levels remained low in the progeny of the T4-treated animals and the TSH response to TRH was subnormal in both the progeny of the T4-treated and the DIMIT-treated animals. However, serum and pituitary TSH and serum T3 were normal. The thyroid control system of the rat is sensitive to prenatal exposure to hyperthyroxinemia as it is to postnatal exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
We studied the effect of thyroid status on thyrotropin-releasing hormone receptor (TRH-R) mRNA levels both in vivo and in vitro (GH3 cells) using a cloned rat TRH-R cDNA by RT-PCR. Experimental hypothyroid rats were produced by total thyroidectomy and were then killed 7 days after the operation. TRH receptor binding in the anterior pituitary and serum TSH level were elevated approximately 2-fold and 8-fold, respectively, in 7 day thyroidectomized rats. TRH-R mRNA levels in hypothyroid rats were also increased significantly compared with those of normal rats. In GH3 cells, however, no significant change of TRH-R mRNA level was observed between cultures treated with triiodothyronine (T3, 10(-9) and 10(-7) M) and the untreated group. The present data indicate that 1) the in vivo effects of thyroid status on TRH-R mRNA levels differ from the in vitro one, and that 2) the down regulation of TRH-R binding by thyroid hormone in GH3 cells may be mediated by translational or post-translational mechanisms.  相似文献   

10.
The pituitary-thyroid axis of 12 patients, exposed to transsphenoidal pituitary microsurgery because of nonfunctioning adenomas (6), prolactinomas (3) and craniopharyngioma (1), or to major pituitary injury (1 apoplexy, 1 accidental injury), was controlled more than 6 months following the incidents. The patients did not receive thyroid replacement therapy and were evaluated by measurement of the serum concentration of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), T3-resin uptake test and thyrotropin (TSH, IRMA method) before and after 200 micrograms thyrotropin releasing hormone (TRH) iv. The examination also included measurement of prolactin (PRL) and cortisol (C) in serum. Apart from 1 patient with pituitary apoplexy all had normal basal TSH levels and 9 showed a significant TSH response to TRH. Compared to 40 normal control subjects the 12 patients had significantly decreased levels of T4, T3 and rT3 (expressed in free indices), while the TSH levels showed no change. Five of the patients, studied before and following surgery, had all decreased and subnormal FT4I (free T4 index) after surgery, but unchanged FT3I and TSH. The levels of FT4I were positively correlated to both those of FT3I and FrT3I, but not to TSH. The TSH and thyroid hormone values showed no relationship to the levels of PRL or C of the patients exposed to surgery. It is concluded that the risk of hypothyroidism in patients exposed to pituitary microsurgery is not appearing from the TSH response to TRH, but from the thyroid hormone levels.  相似文献   

11.
A 50 year old man with hyperthyroidism secondary to inappropriate secretion of TSH is described. On presentation T3 (42.1 nmol/L), T4 (265 nmol/L) and TSH (17.9 mU/L) were all markedly elevated. A diagnosis of a TSH-secreting pituitary tumor was suspected on the basis of a blunted TSH response to TRH and the absence of suppression of TSH by T3 or bromocriptine, but TSH/alpha subunit molar ratios were uncharacteristically less than 1. Nevertheless, the presence of a tumor was confirmed by computed tomography which demonstrated a 15 mm pituitary macroadenoma. The patient was treated with octreotide which resulted in normalisation of thyroid hormone levels. The duration of action of a single 100 micrograms injection of octreotide was at least 56 hours. The suppression of thyroid hormone levels was similar regardless of the treatment regimen with octreotide (100 micrograms tid, 250 micrograms bid, 100 micrograms bid and continuous subcutaneous infusion (CSI] and no escape was observed during a 16 month treatment period. TSH alpha subunit concentrations were also suppressed during long-term treatment with octreotide (3.3 micrograms/L falling to 1.1 micrograms/L), although no acute changes were noted after administration of single dose octreotide 100 micrograms. Three times the octreotide therapy was discontinued. The incremental rise in TSH and the maximum level of TSH achieved was less on each subsequent occasion, suggesting a suppressive effect of octreotide on the tumor itself. Despite suppression of TSH with octreotide over a 13 month period the pituitary tumor showed no shrinkage on repeat MRI scanning. In conclusion, this patient demonstrates that the differential diagnosis of inappropriate TSH secretion based only on biochemical test may be unreliable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cellular levels of mRNA encoding pro TRH in the rostral paraventricular nucleus are reduced by thyroid hormones. To determine whether this regulatory effect of thyroid hormones requires a functional pituitary gland or, specifically, TSH, we examined the effect of T3 on proTRH mRNA in hypophysectomized, thyro-parathyroidectomized male rats with or without bovine TSH replacement. Hypophysectomy plus thyro-parathyroidectomy reduced serum T4 and TSH to undetectable levels in all animals and elevated TRH mRNA in the paraventricular nucleus over that of sham-operated animals. Eleven consecutive daily injections of T3 significantly reduced TRH mRNA levels in both sham controls and thyro-parathyroidectomized rats. However, 11 daily injections of bovine TSH (1 U/day) failed to alter the effect of T3 on TRH mRNA levels. These results demonstrate that the regulatory influence of thyroid hormones on the biosynthesis of TRH within the thyrotropic center of the brain is independent of the pituitary gland and of TSH.  相似文献   

13.
Previous studies have demonstrated immunocytochemical staining for beta chains of thyroid stimulating hormone (TSH-beta) in rough endoplasmic reticulum of pituitary cells hypertrophied after thyroidectomy ("thyroidectomy cells") (Moriarty CG(1976): J Histochem Cytochem (24:846; Moriarty GC, Tobin RB (1976): J Histochem Cytochem 24:1140). Here we report the localization of thyrotropin releasing hormone (TRH) in serial sections of the same pituitaries to determine if it could be found at similar sites. No staining for TRH was found in hypertrophied TSH cells formed 42 days after the surgery, or after 14, 34, and 70 days of propylthiouracil (PTU) treatment. The loss in immunostaining in the PTU-treated rats was correlated with radioimmunoassay (RIA) measurements that showed a 65% reduction in anterior pituitary TRH content after 34, 70, and 98 days of PTU treatment (from 22.9--7.8 pg/mg wet wt) and a 50% reduction in TSH content after 34 days of treatment. When thyroxine was administered to hypothyroid rats for 3 days before death, our previous studies had demonstrated intense staining for TSH in granules inside the rough endoplasmic reticulum. In this study, the radioimmunoassay showed that TSH content rose dramatically in the hypothyroid animals treated with PTU for 77 days and thyroxine for 2 days before death (from 8.5--64.1 mU/mg wet wt); however, the rise in TRH content was minimal (5.8--9.8 pg/mg wet wt). The immunocytochemical stain for TRH correlated well with the RIA showing a weak reaction mainly on small granules in the cytoplasm. No reaction for TRH was found in rough endoplasmic reticulum. These results suggest that TRH and TSH storage sites are dissimilar in the hypothyroid rat. The presence of stain for TRH in granules in the cytoplasm suggests that it might play a role in the storage or packaging of TSH. Its absence in profiles of rough endoplasmic reticulum staining intensely for TSH suggests that it is not synthesized at this site. No definite conclusions about its origin can be drawn at this time.  相似文献   

14.
TRH (10 and 1000 micrograms/kg body weight (BW] was injected ip into pregnant rats daily from day 0 to 20 of pregnancy, and the pituitary-thyroid axis of their pups (Mat-TRH rats) was examined on days 0, 4, 10, 21 and 90 after birth. The pituitary TSH content of male Mat-TRH rats was significantly lower on day 4, and higher on day 10 than that of control rats. The serum TSH was significantly higher on day 10 (except female 10 micrograms/kg group). An exaggerated TSH response to exogenous TRH (10 micrograms/kg BW; ip) was observed on day 10 (males, 1000 micrograms/kg group). The serum T4 level of female Mat-TRH rats was low on day 4 (1000 micrograms/kg group), and higher on day 10. On days 21 and 90, the levels of pituitary TSH, serum TSH and T4 in Mat-TRH rats were similar to those in controls, but the TSH response to TRH was still exaggerated (1000 micrograms/kg group). No significant difference between control and TRH-treated mothers was seen on days 10 and 90 postpartum except for a decreased pituitary TSH content on day 10 in the 1000 micrograms/kg group. It is concluded that repeated administration of TRH to pregnant rats shows an effect on the pituitary-thyroid axis function of their progeny in later life.  相似文献   

15.
Jean H. Dussault 《CMAJ》1974,111(11):1195-1197
Serum thyrotropin (TSH) and prolactin levels were measured after intravenous administration of 400 μg of synthetic thyrotropin-releasing hormone (TRH) in 13 normal subjects and six hypothyroid patients before and after three days of administration of dexamethasone 2 mg per day. In the normal subjects dexamethasone suppressed baseline serum levels and secretion of TSH after TRH stimulation. On the other hand, it had no effect on the hypothyroid patients. In the control group dexamethasone also suppressed baseline serum levels but not secretion of prolactin after TRH stimulation. Dexamethasone had no effect on prolactin levels in the hypothyroid group. It is concluded that in normal patients short-term administration of dexamethasone has an inhibitory effect on TSH secretion at the pituitary level. As for prolactin, our results could indicate that TRH is a more potent stimulator of prolactin secretion than of TSH secretion, or that TSH and prolactin pituitary thresholds for TRH are different.  相似文献   

16.
In the present study we have examined the in vivo effects of thyroid hormones and TRH on tissue and blood levels of TRH and TRH-Gly (pGlu-His-Pro-Gly), a TRH precursor. Using specific radioimmunoassays (RIAs), we measured TRH immunoreactivity (TRH-IR) and TRH-Gly-IR concentrations in blood, hypothalamus, anterior and posterior pituitary, and thyroid in euthyroid, hypothyroid and thyroxine (T4)-treated 250 g male Sprague-Dawley rats. TRH-Gly-IR and TRH-IR were detected in all of these tissues. Highly significant positive correlations between whole blood TRH-Gly-IR levels and the corresponding serum TSH values (p less than 0.01), whole blood TRH-IR versus serum TSH (p less than 0.01) and whole blood TRH-Gly-IR versus whole blood TRH-IR (p less than 0.01) are consistent with cosecretion of TRH and TRH precursor peptides into the circulation. Euthyroid rats injected with TRH IP (1 microgram/100 g b.wt.) and hypothyroid rats had 4-fold higher whole blood TRH-Gly-IR levels compared to euthyroid controls (p less than 0.0005). Injection of TRH into euthyroid rats significantly increased the TRH-Gly-IR concentration in the hypothalamus, anterior and posterior pituitary and thyroid. The increase in blood TRH-Gly-IR following intravenous TRH may be due, in part, to partial saturation of TRH-degrading enzymes in blood and cell membranes. The ratio of TRH-Gly to TRH was significantly increased in the anterior pituitary by hypothyroidism and TRH injection, suggesting that thyroid hormones and TRH regulate the alpha-amidation of TRH-Gly to form TRH in this tissue. TRH-Gly levels of pooled pituitary and thyroid extracts quantitated by a combination of TRH-Gly RIA and high performance liquid chromatography (HPLC) revealed several-fold increases following incubation at 60 degrees C. Heating at this temperature may block the alpha-amidation activity in extra-hypothalamic tissues but not the "trypsin-like" enzymes which cleave prepro-TRH into TRH-Gly-immunoreactive peptides.  相似文献   

17.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

18.
Neuromedin B (NB), a neuropeptide highly concentrated in pituitary, has been proposed to be an inhibitor of thyrotropin (TSH) secretion. Previous study showed that mice with disruption of neuromedin B receptor (NBR-KO) have higher TSH release in response to thyrotropin-releasing hormone (TRH), although TSH seems to have decreased bioactivity. Here we examined in NBR-KO mice the response of TSH to thyroid hormone (TH) deprivation, obtained by methimazole treatment, or excess, obtained by acute and chronic TH administration. In response to hypothyroidism NBR-KO mice exhibited a lower magnitude increase in serum TSH compared to wild-type (WT) mice (1.7 vs. 3.3-times increase compared to euthyroid values, respectively, P<0.001). One hour after a single T4 injection (0.4 microg/100 g BW), WT and NBR-KO hypothyroid mice presented similar degree of serum TSH reduction (54%, P<0.05). However, 3 h after T4 administration, WT mice presented serum TSH similar to hypothyroid baseline, while NBR-KO mice still had decreased serum TSH (30% reduced in comparison to hypothyroid baseline P<0.05). T3 treatment of euthyroid mice for 21 days, with progressively increasing doses, significantly reduced serum TSH similarly in WT and NBR-KO mice. Also, serum T4 exhibited the same degree of suppression in WT and NBR-KO. In conclusion, disruption of neuromedin B receptor did not interfere with the sensitivity of thyroid hormone-mediated suppression of TSH release, but impaired the ability of thyrotroph to increase serum TSH in hypothyroidism, which highlights the importance of NB in modulating the set point of the hypothalamus-pituitary-thyroid axis at hypothyroidism.  相似文献   

19.
TSH, LH and FSH, the three pituitary glycoprotein hormones, are each composed of a common alpha-subunit and a hormone specific beta-subunit. Testosterone is known to regulate all three intact hormones differently in the rodent. However, there is only one gene encoding the common alpha-subunit. In order to elucidate the effects of testosterone on TSH subunit synthesis and its regulation of the common alpha-subunit, two in vivo models were studied: castrate rat pituitary was used as a gonadotropin-enriched tissue; and mouse thyrotropic tumor was used as a thyrotropin-enriched tissue. Male castrate rats were treated with testosterone propionate, 500 micrograms/100 g BW, sc, for 11 days. Testosterone increased plasma TSH to 131% of control values (P less than 0.02), while plasma LH fell to undetectable levels, and plasma alpha-subunit fell to 14% of control values (P less than 0.001). Testosterone increased TSH-beta mRNA to 237% of control values (P less than 0.02), while alpha-subunit mRNA fell to 20% of control values (P less than 0.001). Hypothyroid mice bearing thyrotropic tumors were treated with testosterone propionate, 150 micrograms/100 g BW, sc, for 11 days. In this model plasma TSH-beta and alpha-subunit concentrations are 1000-fold higher than in non-tumor bearing animals, and the contribution of pituitary gonadotropes to plasma subunit concentrations is negligible. "Total" TSH-beta and alpha-subunit concentrations were estimated as one-half of intact TSH plus the respective free subunit concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号