首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Purine compounds were examined for pharmacological activity in the rectum and oesophagus of the garden snail Helix aspersa.2. In the rectum, adenosine, AMP, ADP and ATP (above 10μM) and acetylcholine (above 1 nM) consistently caused concentration-dependent contractions. The slope of the dose-response curve for ADP in the rectum was significantly steeper than for the other purine compounds. The contractile responses to the nucleotides and acetylcholine, but not adenosine, were selectively potentiated by physostigmine (1μM). Atropine (1 μM) and tubocurarine (30 μM) failed to block the responses to the purines or acetylcholine.3. In the oesophagus, adenosine, AMP, ADP and ATP (above 10 μM) and acetylcholine (above 1 nM) caused concentration-dependent contractions that were antagonised by atropine (l μM). Tubocurarine (30 μM) failed to block the responses to the purine compounds or acetylcholine. Physostigmine (1 μM) potentiated the responses to ADP and acetylcholine but not ATP, AMP or adenosine.4. In both the rectum and the oesophagus, the synthetic analogues of purine compounds inclucling 2-chloroadenosine, α, β -methylene ATP and 2-methylthio ATP were inactive up to a concentration of 100 μM.5. Electrical field stimulation of the rectum and oesophagus produced consistent contractions which were unaffected by atropine (1 μM), tubocurarine (30 μM) or physostigmine (1 μM). These responses were not modulated by any of the purine compounds or their stable analogues.6. The responses obtained appear novel even within known invertebrate purinergic systems, suggesting a differentiation of purinoceptor subtypes in this species. There is evidence in the rectum for AMP, ADP and ATP causing the release of acetylcholine; physostigmine potentiated responses to AMP, ADP and ATP, but not to adenosine. This indicates that activity may be mediated via different types of purinoceptors, perhaps equivalent to the P1- and P2-purinoceptors identified in vertebrates.  相似文献   

2.
Two millimeter long secondary root tips of etiolated mung bean (Phaseolus aureus) plants were given 4 minute consecutive treatments of darkness, red light, far red light, and acetylcholine during darkness. We studied the effects of these treatments on exogenous (H+) changes, ATP utilization, O2 uptake, P1 levels, and ATPase activity. Red light and acetylcholine increased the level of P1, O2 uptake, and exogenous H+, but decreased ATP concentrations. Darkness and far red light caused the amount of ATP to increase and decreased the O2 uptake and P1 level. O2 uptake of both excised root tips and isolated mitochondria was promoted by acetylcholine levels of the same order of magnitude that promoted the other photomimetic phenomena. ADP-O ratios indicated that acetylcholine did not cause an appreciable decrease in ATP synthesis. The total ATPase activity remained constant throughout all treatments. Ouabain caused no adhesion to negatively charged glass in the dark, while the inhibitors valinomycin, atractyloside, digitoxin, gramicidin, and oligomycin caused immediate adhesion. All of the inhibitors prevented release from the glass. In red light ouabain increased adhesion, whereas the other inhibitors caused caused immediate and complete adhesion.  相似文献   

3.
The action of acetylcholine and adenosine triphosphate (ATP) on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in the otocyst epithelium of embryonic day 3 chicks with Ca2+-sensitive fluorescence measurements. Increases in [Ca2+]i were evoked by the bath application of acetylcholine (1 μM or higher). The rise in [Ca2+]i was due to the release of Ca2+ from intracellular Ca2+ stores, since the Ca2+ response occurred even in a Ca2+-free medium. The Ca2+ response to acetylcholine was mediated by muscarinic receptors. Atropine of 1 μM abolisehd the response to 10 μM acetylcholine; muscarine and carbamylcholine (100 μM each) evoked Ca2+ rises. Increases in [Ca2+]i were also evoked by the bath application of ATP (10 μM or higher). The Ca2+ rise by ATP was evoked even in a Ca2+-free medium. Adenosine (500 μM) did not cause any Ca2+ response. Suramin and reactive blue 2 (200 μM each) completely blocked the Ca2+ response to 500μM ATP. Uridine triphosphate (500 μM) caused comparable Ca2+ responses with those to 500 μM ATP. These results suggested the involvement of P2U purinoceptors. The potentiation of Ca2+ rise was observed when acetylcholine and ATP were co-applied at submaximal concentrations (10 μM and 100 μM, respectively). We conclude that undifferentiated cells in the otocyst epithelium have CaCa2+ mobilizing systems activated by acetylcholine and ATP. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The effects of cholinergic agonists and antagonists on the release of ATP from isolated myenteric varicosities were studied using a firefly luciferin-luciferase technique. In a previous study, acetylcholine and nicotine released ATP from isolated myenteric varicosities, whereas the muscarinic agonist bethanechol did not. In the present study, release of ATP by acetylcholine was shown to be Ca2+ dependent. d-Tubocurarine competitively antagonized the release of ATP by either acetylcholine or nicotine. Maximal release of ATP by acetylcholine (10(-3) M) was approximately 24% that observed with the depolarizing drug veratridine (5 X 10(-5) M), suggesting either that not all of the varicosities capable of releasing ATP possess nicotinic receptors or that acetylcholine does not depolarize the varicosities to the degree that veratridine does. Tetrodotoxin slightly but significantly reduced ATP release induced by acetylcholine or nicotine, indicating some involvement of Na+ channels in the release process. Finally, 6-hydroxydopamine pretreatment produced a 48% reduction in the acetylcholine-evoked release of ATP, suggesting that much, but possibly not all, of the ATP release occurs from noradrenergic varicosities present in the preparation.  相似文献   

5.
Abstract— Lowering the concentration of oxygen or of glucose to which mouse and rat brains were exposed impaired the synthesis of acetylcholine from labelled precursors in vivo. Histotoxic hypoxia induced with KCN or anemic hypoxia induced with NaNO2 (to oxidize hemoglobin to methemoglobin) reduced incorporation of [2H4]choline into acetylcholine. This change in acetylcholine metabolism occurred with doses of KCN or NaNO2 which did not alter the concentrations of ATP or ADP or the adenylate energy charge. Hypoglycemia induced by large doses of insulin also reduced the incorporation of [2H4]choline into acetylcholine. Both hypoxia and hypoglycemia increased the concentration of choline in the brain. The specific activity of choline did not decrease in hypoxia; it did not decrease enough in hypoglycemia to explain the reduced incorporation of [2H4]choline into acetylcholine. Pretreatment with the cholinesterase inhibitor physostigmine delayed the onset of both seizures and death in mice after induction of hypoxia by large doses of NaNO2. Pretreatment with physostigmine also decreased the number of mice dying within 3 h after the induction of hypoglycemia with large doses of insulin. These observations suggest that the effects of hypoxia and hypoglycemia interfere with the synthesis of a critical pool of acetylcholine. The incorporation of labelled precursors into acetylcholine related linearly to both the cytoplasmic redox state (NAD/NADH ratio) and to the NAD/NADH potential across the mitochondrial membrane. The redox potential of NAD/NADH in the cytoplasm was calculated from the [pyruvate]/[lactate] equilibrium and the redox potential of NAD/NADH in the mitochondria from the [NH4][2-oxoglutar-ate]/[glutamate] equilibrium. The potential across the mitochondrial membrane was calculated from the difference. These observations indicate that carbohydrate oxidation is one of the factors on which the synthesis of the neurotransmitter acetylcholine depends closely in mouse and rat brain.  相似文献   

6.
This study assessed the involvement of exogenously supplied acetylcholine, dibutyryl cyclic AMP, and various inhibitors of acetylcholine and cyclic AMP metabolism on the rapid phytochrome-mediated alteration in the ATP content of etiolated bean buds (Phaseolus vulgaris L. cv. Red Kidney). ATP was extracted in boiling water and measured by the firefly luciferin-luciferase assay. The depression of ATP content by low levels of either acetylcholine or dibutyryl cyclic AMP was independent of irradiation. Atropine, AMO-1618, and theophylline all altered ATP content, and the effects differed in red light and in darkness. In contrast to other reports, no straightforward model of phytochrome action through either acetylcholine or cyclic AMP could be constructed. Also, the time course of ATP content during the standard 5 min red-irradiation period was determined, and effects of light are observed within 1 min.  相似文献   

7.
Low concentrations of L-ascorbic acid caused release of acetylcholine from isolated synaptic vesicles (rat, guinea-pig and rabbit) in the presence of 2mM ATP, 2 mM MgCl2 and 10?5 M CaCl. The half maximum effect was obtained with about 2 to 2.5 ωM L-ascorbic acid, and the effect was inhibited by addition of 1mM EGTA. The release of noradrenaline from rat synaptic vesicles was also enhanced by L-ascorbic acid, but the concentration for half maximal stimulation was about 20 ωM, indicating that noradrenaline release was less sensitive to L-ascorbic acid than acetylcholine release. The physiological function of L-ascorbic acid in the brain is discussed in relation to release of transmitters.  相似文献   

8.
Abstract— The effect of stimulating the electric organ of Torpedo marmorata , anaesthetized with 0.01% Tricaine methane sulphonate, by means of electrical stimulation (5/s) administered via an electrode placed on the electric lobe has been studied electrophysiologically, biochemically and morphologically. The response of the organ declined to about 50 per cent of its initial value after about 500 stimuli, by a further 10 per cent after another 500 stimuli and then to about 12 per cent of the initial value after a further 1000 stimuli. Thereafter the response fell off progressively. However, even when the response was less than 1 per cent of its initial value, the organ had considerable powers of recuperation during a 30-s rest period, to 30–50 per cent of its initial value.
The fall in response was accompanied by a reduction in vesicle size and number, an increase in the area of the presynaptic membrane and a fall in the protein, total nucleotide, ATP and acetylcholine content of the vesicle fraction isolated from the stimulated tissue. However, whereas vesicle numbers and the protein and total nucleotide content of the vesicle fraction fell by only about 50 per cent, vesicular ATP and acetylcholine levels were reduced to about 10 per cent. An analysis of the covariance of vesicular ATP and acetylcholine showed an initial loss of an acetylcholine-rich (relative to ATP) population of vesicles. The early loss of vesicular protein and nucleotide and vesicle numbers as well as the morphological changes seen would be consistent with a loss of vesicles due to fusion with the external membrane. The preferential loss of acetylcholine and ATP from the vesicle fraction indicates that the vesicles surviving the stimulation procedure have been utilized in a number of cycles causing the progressive fall in vesicle volume, and acetylcholine and ATP content.  相似文献   

9.
The studies on rats were carried out to determine dynamics of pO2 in the mucous membrane of the stomach under the effect of acetylcholine, norepinephrine, serotonin, histamine, prostaglandin E2 and ATP. As to the changes in pO2 the mediator substances were arranged as follows (from more intensive effect to less pronounced one): serotonin, acetylcholine, prostaglandin E2, norepinephrine, histamine and ATP. As to the duration of the action--PGE2 acetylcholine, serotonin, norepinephrine, ATP and histamine. Under the joint action of the mediator substances (serotonin, norepinephrine, histamine) with acetylcholine the effects of domination and modulation of acetylcholine effect are found.  相似文献   

10.
The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.  相似文献   

11.
Adenosine triphosphate. A constituent of cholinergic synaptic vesicles   总被引:25,自引:2,他引:23       下载免费PDF全文
1. Synaptic vesicles separated by density-gradient centrifugation from extracts of the cholinergic nerve terminals of the electric organ of Torpedo marmorata were found to contain appreciable amounts of ATP as well as acetylcholine. 2. Vesicular ATP was stable in the presence of concentrations of apyrase and myokinase that rapidly destroyed equivalent amounts of endogenous or added free ATP; pre-treatment of cytoplasmic extracts of electric tissue with these enzymes destroyed endogenous free ATP, but did not affect the vesicular ATP. 3. When [U-(14)C]ATP was added to electric tissue at the time of comminution and extraction of the vesicles, all the radioactivity was associated with soluble components in the subsequent fractionation: none was associated with vesicles or membrane fragments; thus it is unlikely that vesicular ATP can be accounted for by the sequestration of endogenous free ATP within any vesicles formed during comminution and extraction of the tissue. 4. When synaptic vesicles were passed through iso-osmotic columns of Bio-Gel A-5m, which separates vesicles from soluble proteins and small molecules, all the recovered ATP and acetylcholine passed through together in the void volume. 5. Regression analysis showed that vesicular ATP content was highly correlated with vesicular acetylcholine content in different experiments, the molar ratio acetylcholine/ATP being 5.32+/-(s.e.m.) 0.45 (21 expts.) for the peak density-gradient fraction. The ratio varied, however, somewhat across the density-gradient peak suggesting some degree of chemical heterogeneity in the vesicle population.  相似文献   

12.
13.
W M Fu  M M Poo 《Neuron》1991,6(5):837-843
Extracellular application of ATP, a substance co-stored and co-released with acetylcholine in peripheral nervous systems, potentiates the spontaneous secretion of acetylcholine at developing neuromuscular synapses in Xenopus cell culture, as shown by a marked increase in the frequency of spontaneous synaptic currents recorded in the postsynaptic muscle cell. The effect of ATP is apparently mediated by the activation of cytosolic protein kinases and requires the influx of Ca2+ through the plasma membrane. Since spontaneous acetylcholine release is known to regulate the development of contractile properties of the postsynaptic muscle cell, extracellular ATP may serve as a positive trophic factor at developing neuromuscular synapses.  相似文献   

14.
Following photolysis in the presence of the isolated guinea-pig vas deferens, arylazido aminopropionyl ATP (ANAPP3), a photoaffinity label analog of ATP, produces an irreversible and specific pharmacological antagonism of contractile responses to adenine nucleotides. Experiments were performed to determine whether the antagonism follows the photolysis-dependent formation of nitrene intermediates at occupied receptors (true photoaffinity labeling) or if the reactive intermediate is photogenerated in solution prior to diffusion to the receptor and formation of covalent bonds (pseudo-photoaffinity labeling). When present during photolysis, para-aminobenzoic acid (PABA; 10 mM), a scavenger for nitrenes generated in solution, did not prevent the antagonism of ATP-induced responses by ANAPP3. However, the absorption spectrum of ANAPP3 photolyzed in the presence of PABA was different from that obtained when PABA was not present. This evidence for the formation of additional photolysis products suggests that ANAPP3 had inserted into PABA during photolysis. Thus, covalent bonds arise from true photoaffinity labeling of the receptor. An analysis of the pharmacological effects of PABA indicated that responses to ATP, KCl and acetylcholine were unaffected either in the presence of, or after a 23 min incubation, with 10 mM PABA. In contrast, PABA produced a substantial, but reversible, antagonism of histamine- and norepinephrine-induced contractions. Irradiation of tissues in the presence of 10 mM PABA produced a slight potentiation of responses to ATP. Thus, information on the mechanisms of photoaffinity labeling may be obtained from functional studies on intact tissues. However, the pharmacological effects of agents used to define these mechanisms should be evaluated as well.  相似文献   

15.
Changes in the content of high-energy phosphates, intracellular pH (pHi) and the ratio of MgATP to total ATP ([MgATP]/[ATP]t) resulting from continuous stimulation with acetylcholine (10(-9) to 10(-4) M) were measured by 31P-NMR spectroscopy in the isolated, perfused rabbit mandibular gland at 37 degrees C. With 10(-9) to 10(-7) M acetylcholine, no significant changes in these parameters were observed. On stimulation with 10(-6) M acetylcholine, the optimal concentration for sustained secretion, the content of ATP decreased by 28 +/- 10% (mean +/- S.E.; n = 8) of its control value. pHi decreased initially by approx. 0.05 pH unit, then showed an alkalinization of 0.09 +/- 0.02 pH unit (n = 8). With 10(-5) and 10(-4) M acetylcholine, changes in ATP and pHi were similar to those induced by 10(-6) M acetylcholine: the total content of high-energy phosphates remained at approx. 70% of the control value and no decrease in [MgATP]/[ATP]t was observed. As possible causes of the reduced secretory rate observed with higher concentrations of acetylcholine (10(-5) to 10(-3) M), we can exclude depletion of high-energy phosphates, inhibition of metabolism caused by intracellular acidosis, and inhibition of ATP usage caused by a decrease in MgATP availability.  相似文献   

16.
Microsomal Na, K-ATPase is activated by acetylcholine (5 x 10(-6)--10(-5) M) in a cell-free system including neuronal nuclei and the microsomal--cytoplasmic fraction. No enzyme activation by acetylcholine occurs in the presence of puromycin, actinomycin D and ribonuclease or upon removal of the nuclear or microsomal--cytoplasmic fraction from the system. After preincubation with acetylcholine the membranes reveal a better capacity for phosphorylation by [gamma-32P]ATP and dephosphorylation in the presence of ADP and Na+. The ATP binding by the membranes preincubated in a system with acetylcholine is also increased thereby. It was assumed that acetylcholine induces the synthesis of Na, K-ATPase or its protein activator.  相似文献   

17.
An oxystat was designed to enable maintenance of very low, predetermined oxygen tensions (below 1 microM) in incubated suspensions of synaptosomes. The oxygen thresholds for the energy state (ATP and creatine phosphate levels), for lactate production, and for acetylcholine release were compared. The approximate thresholds (microM O2) in veratridine-stimulated preparations were: oxygen consumption, 10; ATP, 10; creatine phosphate, 15; lactate release, 20; and acetylcholine release, 25. The results for release of total acetylcholine and of the acetylcholine newly synthesized from [14C]glucose were indistinguishable. The results from this study are discussed in relation to hypoxia and to reported in vivo observations.  相似文献   

18.
Choline kinase (EC 2.7.1.32; ATP: choline phosphotransferase) was purified 200-fold from an extract of acetone powder of rabbit brain by a combination of acid precipitation, ammonium sulphate precipitation, DEAE cellulose chromatography, and ultrafiltration. Maximal activity of 243 nmol of phosphorylcholine synthesized. min?1 mg?l of protein occurred at pH 9.5–10.0 in the presence of 10 mm MgS04, 10 mm choline and 0.005% (w/v) bovine serum albumin. 2-Aminoethanol, 2-methylaminoethanol, and 2-dimethylaminoethanol were also phosphorlyated by the enzyme preparation. The enzyme quantitatively converted low concentrations of choline (2.5–50 μm ) to phosphorylcholine [32P] in the presence of ATP [y32P], and may, therefore, be used to measure small amounts of choline acetylcholine. There were two Km values for choline at pH 9.5; 32 μm and 0.31 mm . At pH 7.4, the higher Km was not observed and enzyme activity was maximal with 0.1 mm choline. The Km for ATP was 1.1 mm . Enzyme activity was inhibited by ATP (20 mm ), AMP, ADP, cytidine diphosphocholine (1 or 10 mm ), and activated by choline esters (1.0 mm ), NaCl or KCl(200 mm ).  相似文献   

19.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

20.
M. J. Jaffe  Linda Thoma 《Planta》1973,113(4):283-291
Summary 4 min of red light increases the uptake of sodium acetate[1-14C] by excised, etiolated secondary roots of Phaseolus aureus Roxb. 4 min of far-red light reveres this effect. AMO-1618, which inhibits acetylcholinesterase activity, enhances the red-light effect, while d-tubocurarine, which blocks the animal acetylcholine receptor, inhibits it. Red light also increases basipetal translocation of the label. When the metabolic fate of the label was determined in dark-held roots, 36% of the label remained as acetate, 48% evolved as [14C]CO2, 3% partitioned with acetylcholine, and 3% effluxed from the roots. The rest of the label was associated with the coarse residue left after extraction. The major effect of red light was to increase the uptake of the label in the acetate fraction.We interpret these observations to mean that the phytochrome mechanism immediately causes an increase in uptake of the label during brief irradiation with red light. Because of our previous demonstration that both red light and acetylcholine increase respiration, it is probable that the increased absorption of the label is a process requiring respiratory energy. These data support the concept of phytochrome as a membrane-bound functional system that in bean roots is mediated by the acetylcholine mechanism.Abbreviations ACh Acetylcholine - AChE acetylcholinesterase - ATP adenosine triphosphate - AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride - TPB tetraphenyl boron - D darkness - FR far-red - R red  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号