首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M D Bond  B L Vallee 《Biochemistry》1988,27(17):6282-6287
Angiogenin, which induces the formation of new blood vessels, was isolated previously from two human sources--HT-29 tumor conditioned media and normal plasma. By use of a newly developed binding assay, a similar protein has now been purified from bovine plasma at levels of 30-80 micrograms/L. This protein has the structural, enzymatic, and biological characteristics expected for an angiogenin molecule. Its amino acid composition is similar to that of the human protein, and 22 of 31 residues in the amino-terminal sequences are identical, including a block of 11 consecutive residues. Like human angiogenin, the bovine protein binds placental ribonuclease inhibitor, is inactive toward conventional RNase A substrates, and displays selective ribonucleolytic activity toward some rRNAs. In addition, the bovine protein induces angiogenesis in vivo in the chick embryo chorioallantoic membrane assay at levels as low as 44 fmol per egg. Thus, angiogenin is present in bovine sera at levels similar to those observed in man, and its enzymatic and biological activities are identical with those of the human protein.  相似文献   

2.
F S Lee  B L Vallee 《Biochemistry》1989,28(8):3556-3561
The importance of specific residues in angiogenin for binding to placental ribonuclease inhibitor (PRI) has been assessed by examining the interaction of angiogenin derivatives with PRI. PRI binds native angiogenin with a Ki value of 7.1 X 10(-16) M [Lee, F. S., Shapiro, R., & Vallee, B. L. (1989) Biochemistry 28, 225-230]. Substitution of a Gln for Lys-40 in angiogenin by site-specific mutagenesis decreases the association rate constant 3-fold and increases the dissociation rate constant 440-fold, resulting in a 1300-fold weaker Ki value. The half-life of the mutant.PRI complex is 3.4 h compared to approximately 60 days for the native angiogenin.PRI complex. The magnitude of the change in Ki value suggests that in the complex, Lys-40 forms a salt bridge or hydrogen bond with an anionic moiety in PRI. Carboxymethylation of His-13 or His-114 with bromoacetate increases the Ki value 15-fold, and oxidation of Trp-89 by means of dimethyl sulfoxide and hydrochloric acid increases it 2.4-fold, suggesting that these residues also form part of the contact region with PRI. The changes in Ki value reflect an increase in the dissociation rate constant. On the other hand, dinitrophenylation of either Lys-50 or Lys-60 with 1-fluoro-2,4-dinitrobenzene does not significantly alter the Ki value, suggesting that these residues are not part of the contact region. These results indicate that PRI inhibition minimally involves the three residues critical for the activity of angiogenin--Lys-40, His-13, and His-114--and to a lesser extent its single tryptophan, Trp-89.  相似文献   

3.
A convenient in vitro assay for angiogenin has been developed which greatly facilitates its routine detection and quantitation. The assay is based on the capacity of angiogenin to bind placental ribonuclease inhibitor (PRI); it is less tedious and more versatile than existing procedures that measure blood vessel growth or cleavage of rRNA. The test sample is added to a reaction mixture containing a known quantity of PRI, which complexes any angiogenin present in the sample. A slight excess of RNase A, relative to PRI, is then added, and the amount of RNase A which remains unbound is determined by measuring the generation of acid-soluble fragments from yeast RNA. The assay is sensitive to 30 fmol of angiogenin and is linear over a 17-fold concentration range. Use of the binding assay in parallel with a conventional RNase A assay provides a means of detecting angiogenin in chromatographic fractions and differentiating it from RNases. This procedure makes possible the isolation of angiogenin from new sources, such as nonhuman sera. It may also be applicable to other biologically active proteins with sequence homology to RNase A, e.g., eosinophil cationic protein or eosinophil derived neurotoxin.  相似文献   

4.
F S Lee  D S Auld  B L Vallee 《Biochemistry》1989,28(1):219-224
The binding of human placental ribonuclease inhibitor (PRI) to angiogenin, a human protein that induces neovascularization, occurs with a 1:1 stoichiometry and is accompanied by a 50% increase in tryptophan fluorescence. In contrast, the binding of PRI to bovine pancreatic RNase A or to angiogenin oxidized at its single tryptophan residue results in a quenching of fluorescence. These observations suggest that there is a change in the local environment of Trp-89 of angiogenin. Quenching experiments with acrylamide are consistent with the view that Trp-89 is exposed in the native protein and becomes less accessible upon formation of the complex with PRI. Stopped-flow kinetic measurements monitoring the fluorescence enhancement indicate a two-step mechanism for the binding of PRI to angiogenin. The first step involves rapid formation of an enzyme-inhibitor complex, EI, followed by a slower isomerization of EI to a tight enzyme-inhibitor complex, EI*: (Formula: see text). In 0.1 M NaCl at pH 6 and 25 degrees C, the values of K1 and K2 are 0.53 microM and 97 s-1, respectively. The apparent second-order rate constant of association at protein concentrations much less than K1 is approximated by K2/K1 and equals 1.8 X 10(8) M-1 s-1. The corresponding value for the association of PRI with RNase A is only slightly higher, 3.4 X 10(8) M-1 s-1. The effects of pH and sodium chloride concentration on the association rate of PRI with angiogenin suggest the importance of ionizable groups and ionic interactions, respectively, in the association process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R Shapiro  B L Vallee 《Biochemistry》1991,30(8):2246-2255
The interactions of human placental ribonuclease inhibitor (PRI) with bovine pancreatic ribonuclease (RNase) A and human angiogenin, a plasma protein that induces blood vessel formation, have been characterized in detail in earlier studies. However, studies on the interaction of PRI with the RNase(s) indigenous to placenta have not been performed previously, nor have any placental RNases been identified. In the present work, the major human placental RNase (PR) was purified to homogeneity by a five-step procedure and was obtained in a yield of 110 micrograms/kg of tissue. The placental content of angiogenin was also examined and was found to be at least 10-fold lower than that of PR. On the basis of its amino acid composition, amino-terminal sequence, and catalytic properties, PR appears to be identical with an RNase previously isolated from eosinophils (eosinophil-derived neurotoxin), liver, and urine. The apparent second-order rate constant of association for the PR.PRI complex, measured by examining the competition between PR and angiogenin for PRI, is 1.9 X 10(8) M-1 s-1. The rate constant for dissociation of the complex, determined by HPLC measurement of the rate of release of PR from its complex with PRI in the presence of a scavenger for free PRI, is 1.8 X 10(-7) s-1. Thus the Ki value for the PR.PRI complex is 9 X 10(-16) M, similar to that obtained with angiogenin, and 40-fold lower than that measured with RNase A. Complex formation causes a small red shift in the protein fluorescence emission spectrum, with no significant change in overall intensity. The fluorescence quantum yield of PR and the Stern-Volmer constant for fluorescence quenching by acrylamide are both high, possibly due to the presence of an unusual posttranslationally modified tryptophan residue at position 7 in the primary sequence.  相似文献   

6.
C Z Chen  R Shapiro 《Biochemistry》1999,38(29):9273-9285
Previous single-site mutagenesis studies on the complexes of ribonuclease inhibitor (RI) with angiogenin (Ang) and RNase A suggested that in both cases a substantial fraction of the binding energy is concentrated within one small part of the crystallographically observed interface, involving RI residues 434-438. Such energetic "hot spots" are common in protein-protein complexes, but their physical meaning is generally unclear. Here we have investigated this question by examining the detailed interactions within the RI.ligand hot spots and the extent to which they function independently. The effects of Phe versus Ala substitutions show that the key residue Tyr434 interacts with both ligands primarily through its phenyl ring; for Tyr437, the OH group forms the important contacts with RNase A, whereas the phenyl group interacts with Ang. Kinetic characterization of complexes containing multiple substitutions reveals striking, but distinctive, cooperativity in the interactions of RI with the two ligands. The losses in binding energy for the RNase complex associated with replacements of Tyr434 and Asp435, and Tyr434 and Tyr437, are markedly less than additive (i.e., by 2.4 and 1.3 kcal/mol, respectively). In contrast, the energetic effects of the 434 and 435, and 434 and 437, substitution pairs on binding of Ang are fully additive and 2.5 kcal/mol beyond additive, respectively. Superadditivities (0.9-2.4 kcal/mol) are also observed for several multisite replacements involving these inhibitor residues and two Ang residues, Arg5 and Lys40, from this part of the interface. Consequently, the decreases in binding energy for some triple-variant complexes are as large as 8.5-10.1 kcal/mol (compared to a total DeltaG of -21.0 kcal/mol for the wild-type complex). Potential explanations for these functional couplings, many of which occur over distances of >13 A and are not mediated by direct or triangulated contacts, are proposed. These findings show that the basis for the generation of hot spots can be complex, and that these sites can assume significantly more (as with Ang) or less (as with RNase) importance than indicated from the effects of single-site mutations.  相似文献   

7.
Human placental RNase inhibitor (hRI), a leucine-rich repeat protein, binds the blood vessel-inducing protein human angiogenin (Ang) with extraordinary affinity (Ki <1 fM). Here we report a 2.0 A resolution crystal structure for the hRI-Ang complex that, together with extensive mutagenesis data from earlier studies, reveals the molecular features of this tight interaction. The hRI-Ang binding interface is large and encompasses 26 residues from hRI and 24 from Ang, recruited from multiple domains of both proteins. However, a substantial fraction of the energetically important contacts involve only a single region of each: the C-terminal segment 434-460 of hRI and the ribonucleolytic active centre of Ang, most notably the catalytic residue Lys40. Although the overall docking of Ang resembles that observed for RNase A in the crystal structure of its complex with the porcine RNase inhibitor, the vast majority of the interactions in the two complexes are distinctive, indicating that the broad specificity of the inhibitor for pancreatic RNase superfamily proteins is based largely on its capacity to recognize features unique to each of them. The implications of these findings for the development of small, hRI-based inhibitors of Ang for therapeutic use are discussed.  相似文献   

8.
Primary structure of human placental ribonuclease inhibitor   总被引:16,自引:0,他引:16  
The primary structure of the human placental ribonuclease inhibitor (PRI), a tight-binding inhibitor of angiogenin and pancreatic ribonucleases, has been determined from the cDNA. The sequence of the mature protein is composed of 460 amino acids, yielding a molecular mass of 49,847 g/mol. Peptides comprising 92% of the predicted sequence were isolated from a tryptic digest of PRI, and direct sequence information obtained for 65% of the molecule agreed at all positions with the sequence predicted from the cDNA. The amino acid sequence of PRI contains seven direct internal repeat units, each 57 amino acids in length. These repeat units comprise 87% of the molecule. The average degree of identity between any two is 39%. A region within each repeat unit displays similarity to tandem, leucine-rich repeats found in six other proteins. Modification of PRI with iodoacetic acid, p-(hydroxymercuri)benzoate, and 5,5'-dithiobis(2-nitrobenzoic acid) reveals that at least 30 of the 32 cysteine residues of PRI are in the reduced form.  相似文献   

9.
Targeted human cytolytic fusion proteins (hCFPs) represent a new generation of immunotoxins (ITs) for the specific targeting and elimination of malignant cell populations. Unlike conventional ITs, hCFPs comprise a human/humanized target cell‐specific binding moiety (e.g., an antibody or a fragment thereof) fused to a human proapoptotic protein as the cytotoxic domain (effector domain). Therefore, hCFPs are humanized ITs expected to have low immunogenicity. This reduces side effects and allows long‐term application. The human ribonuclease angiogenin (Ang) has been shown to be a promising effector domain candidate. However, the application of Ang‐based hCFPs is largely hampered by the intracellular placental ribonuclease inhibitor (RNH1). It rapidly binds and inactivates Ang. Mutations altering Ang's affinity for RNH1 modulate the cytotoxicity of Ang‐based hCFPs. Here we perform in total 2.7 µs replica‐exchange molecular dynamics simulations to investigate some of these mutations—G85R/G86R (GGRRmut), Q117G (QGmut), and G85R/G86R/Q117G (GGRR/QGmut). GGRRmut turns out to perturb greatly the overall Ang‐RNH1 interactions, whereas QGmut optimizes them. Combining QGmut with GGRRmut compensates the effects of the latter. Our results explain the in vitro finding that, while Ang GGRRmut‐based hCFPs resist RNH1 inhibition remarkably, Ang WT‐ and Ang QGmut‐based ones are similarly sensitive to RNH1 inhibition, whereas Ang GGRR/QGmut‐based ones are only slightly resistant. This work may help design novel Ang mutants with reduced affinity for RNH1 and improved cytotoxicity.  相似文献   

10.
The data presented here show for the first time that the protein known as "ribonuclease (RNase) inhibitor" (RI or RNH1) is present not only in the cell cytosol, but also in mitochondria, the central organelles in cell redox homeostasis. This finding directly correlates with the reported ability of RI to protect the cell from oxidative stress, with its sensitivity to oxidation and reactivity as a reactive oxygen species scavenger. While this study was carried out we also surprisingly discovered the presence of RI in the cell nucleus. We deem that these data open new views in the investigation on the cellular role(s) of the RI.  相似文献   

11.
Ribonuclease inhibitor (RI) binds diverse mammalian RNases with extraordinary avidity. Here, we have investigated the structural basis for this tight binding and broad specificity by mutational analysis of the complexes of RI with angiogenin (Ang) and RNase A (K(D)=0.5 fM and 43 fM, respectively). Both crystal structures are known; the interfaces are large, and the ligands dock similarly, although few of the specific interactions formed are analogous. Our previous mutagenesis studies focused primarily on one contact region, containing RI 434-438 and the enzymatic active site. Many single-residue replacements produced extensive losses of binding energy (2.3-5.9 kcal/mol), suggesting that this region constitutes a "hot spot" in both cases. We have now explored the roles of most of the remaining RI residues that interact with Ang and/or RNase A. One major cluster in each complex lies in a Trp-rich area of RI, containing Trp261, Trp263, Trp318, and Trp375. Although the energy losses from individual replacements in this portion of the Ang complex were small-to-moderate (0-1.5 kcal/mol), the changes from multiple substitutions were much greater than additive, and the binding energy provided by this region is estimated to be approximately 6 kcal/mol (30 % of total). Effects of replacing combinations of hot spot components had also been found to be superadditive, and this negative cooperativity is now shown to extend to the neighboring contact residue RI Ser460. The overall contribution of the hot spot, taking superadditivity into account, is then approximately 14-15 kcal/mol. The hot spot and Trp-rich regions, although spatially well separated, are themselves functionally linked. No other parts of the RI-Ang interface appear to be energetically important. Binding of RNase A is more sensitive to substitutions throughout the interface, with free energy losses>/=1 kcal/mol produced by nearly all replacements examined, so that the sum of losses greatly exceeds the binding energy of the complex. This discrepancy can be explained, in part, by positive cooperativity, as evident from the subadditive effects observed when combinations of residues in either the hot spot or Trp-rich region are replaced. These findings suggest that the binding energy may be more widely distributed in the RNase A complex than in the Ang complex.  相似文献   

12.
The primary structures of the blood vessel inducing protein human angiogenin and human pancreatic ribonuclease (RNase) are 35% identical. Angiogenin catalyzes the limited cleavage of ribosomal RNA (18 and 28 S), yielding a characteristic pattern of polynucleotide products, but shows no significant activity toward conventional pancreatic RNase substrates [Shapiro, R., Riordan, J. F., & Vallee, B. L. (1986) Biochemistry 25, 3527-3532]. Angiogenin/RNase hybrid enzymes--wherein particular regions of primary structure in RNase are replaced by the corresponding segments of angiogenin--serve to explore the structural features underlying angiogenin's characteristic activities. Herein we show that synthetic angiogenin peptides, Ang(1-21) and Ang(108-123), form noncovalent complexes with inactive fragments of bovine RNase A--RNase(21-124) (i.e., S-protein) and RNase(1-118), respectively--with regeneration of activity toward conventional RNase substrates. Maximal activities for the Ang(1-21)/S-protein complex (Kd = 1.0 microM) are 52%, 45%, and 15% toward cytidine cyclic 2',3'-phosphate, cytidylyl(3'----5')adenosine, and yeast RNA, respectively. In contrast, activities of the RNase(1-118)/Ang(108-123) hybrid (Kd = 25 microM) are 1-2 orders of magnitude lower toward cyclic nucleotides and dinucleoside phosphates. However, substitution of phenylalanine for Leu-115 in Ang(108-123) increases activity up to 100-fold. Both His-13 and His-114 in the angiogenin peptides are required for activity since their substitution by alanine yields inactive complexes. Importantly, the pattern of polynucleotide products formed during cleavage of ribosomal RNA by the Ang(1-21)/S-protein hybrid shows a striking resemblance to that formed by angiogenin, demonstrating that the hybrid retains features of both angiogenin and RNase A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Expression of human placental ribonuclease inhibitor in Escherichia coli   总被引:1,自引:0,他引:1  
Human placental ribonuclease inhibitor (PRI) has been expressed in and isolated from Escherichia coli. Its apparent molecular weight, immunoreactivity and amino acid composition are virtually identical with those of native PRI. It inhibits the enzymatic activities of either angiogenin, a blood vessel inducing protein homologous to pancreatic RNase (RNase A), or RNase A in a stoichiometry of 1:1. Recombinant PRI binds to angiogenin and RNase A with Ki values of 2.9 x 10(-16) M and 6.8 x 10(-14) M, respectively, comparable to the affinities of native PRI for these enzymes. Thus, these results confirm that PRI inhibits angiogenin more effectively than RNase A.  相似文献   

14.
Recently, 3',5'-pyrophosphate-linked 2'-deoxyribodinucleotides were shown to be >100-fold more effective inhibitors of RNase A superfamily enzymes than were the corresponding monophosphate-linked (i.e., standard) dinucleotides. Here, we have investigated two ribo analogues of these compounds, cytidine 3'-pyrophosphate (P'-->5') adenosine (CppA) and uridine 3'-pyrophosphate (P'-->5') adenosine (UppA), as potential substrates for RNase A and angiogenin. CppA and UppA are cleaved efficiently by RNase A, yielding as products 5'-AMP and cytidine or uridine cyclic 2',3'-phosphate. The k(cat)/K(m) values are only 4-fold smaller than for the standard dinucleotides CpA and UpA, and the K(m) values (10-16 microM) are lower than those reported for any earlier small substrates (e.g., 500-700 microM for CpA and UpA). The k(cat)/K(m) value for CppA with angiogenin is also only severalfold smaller than for CpA, but the effect of lengthening the internucleotide linkage on K(m) is more modest. Ribonucleotide 3',5'-pyrophosphate linkages were proposed previously to exist in nature as chemically labile intermediates in the pathway for the generation of cyclic 2',3'-phosphate termini in various RNAs. We demonstrate that in fact they are relatively stable (t(1/2) > 15 days for uncatalyzed degradation of UppA at pH 6 and 25 degrees C) and that cleavage in vivo is most likely enzymatic. Replacements of the RNase A catalytic residues His12 and His119 by alanine reduce activity toward UppA by approximately 10(5)-and 10(3.3)-fold, respectively. Thus, both residues play important roles. His12 probably acts as a base catalyst in cleavage of UppA (as with RNA). However, the major function of His119 in RNA cleavage, protonation of the 5'-O leaving group, is not required for UppA cleavage because the pK(a) of the leaving group is much lower than that for RNA substrates. A crystal structure of the complex of RNase A with 2'-deoxyuridine 3'-pyrophosphate (P'-->5') adenosine (dUppA), determined at 1.7 A resolution, together with models of the UppA complex based on this structure suggest that His119 contributes to UppA cleavage through a hydrogen bond with a nonbridging oxygen atom in the pyrophosphate and through pi-pi stacking with the six-membered ring of adenine.  相似文献   

15.
Affinity-purified human placental ribonuclease inhibitor (PRI) was digested by trypsin. Subsequent fractionation of the hydrolysate by HPLC yielded 44 fractions, 3 of which retained the ability to inhibit ribonuclease. One of these, the most active, was a 15 amino acid peptide which had an amino acid composition corresponding to a tryptic fragment of PRI. This peptide was synthesised, and preliminary experiments were carried out on its interactions with ribonuclease. These experiments suggested that the behaviour of the peptide in terms of effect of pH, and effect of salt concentration were similar to the protein from which it was derived. These studies together with the strategic positioning of the peptide in the sequence of the ribonuclease inhibitor, suggest that this segment of PRI has an important role in the inhibitory activity of the intact protein.  相似文献   

16.
Placental ribonuclease inhibitor (RI) binds diverse mammalian RNases with dissociation constants that are in the femtomolar range. Previous studies on the complexes of RI with RNase A and angiogenin revealed that RI utilises largely distinctive interactions to achieve high affinity for these two ligands. Here we report a 2.0 angstroms resolution crystal structure of RI in complex with a third ligand, eosinophil-derived neurotoxin (EDN), and a mutational analysis based on this structure. The RI-EDN interface is more extensive than those of the other two complexes and contains a considerably larger set of interactions. Few of the contacts present in the RI-angiogenin complex are replicated; the correspondence to the RI-RNase A complex is somewhat greater, but still modest. The energetic contributions of various interface regions differ strikingly from those in the earlier complexes. These findings provide insight into the structural basis for the unusual combination of high avidity and relaxed stringency that RI displays.  相似文献   

17.
A radio-ribonuclease inhibitor assay based on the interaction of 125I-angiogenin with ribonuclease inhibitor (RI) was used to detect pancreatic-type ribonucleases and potential modulators of their action. We show that highly basic proteins including the homopolypeptides poly-arginine, poly-lysine and poly-ornithine, core histones, spermatid-specific S1 protein and the protamines HP3 and Z3 were strong inhibitors of angiogenin binding to RI. A minimum size of poly-arginine and poly-lysine was required for efficient inhibition. The inhibition likely resulted from direct association of the basic proteins with the acidic inhibitor, as RI bound to poly-lysine and protamines while 125I-angiogenin did not. Antagonists of the angiogenin-RI interaction are potential regulators of either angiogenin-triggered angiogenesis and/or intracellular RI function, depending on their preferential target.  相似文献   

18.
19.
Human cytochrome P450 (P450) enzymes exhibit remarkable diversity in their substrate specificities, participating in oxidation reactions of a wide range of xenobiotic drugs. Previously, we reported that alpha-naphthoflavone (ANF) is bound to the recombinant P450 1A2 tightly and stabilizes an overall enzyme conformation. The present study is designed to determine the type of P450 1A2 inhibition exerted by ANF, using two different substrates of P450 1A2, 7-ethoxycoumarin (EOC) and 7-ethoxyresorufin (EOR). ANF is generally known as a competitive inhibitor of the enzyme. However, in our tight-binding enzyme kinetics study, ANF acts as noncompetitive inhibitor in 7-ethoxycoumarin O-deethylation (ECOD) (K(i)=55.0 nM), but as competitive inhibitor in 7-ethoxyresorufin O-deethylation (EROD) (K(i)=1.4 nM). Based on homology modeling studies, ANF is positioned to bind to a hydrophobic cavity next to the active site where it may cause a direct effect on substrate binding. It is agreed with the predicted binding site of ANF in P450 3A4, in which ANF is rather known as a stimulating modulator. Our results suggest that ANF binds near the active site of P450 1A2 and exhibits differential inhibition mechanisms, possibly depending on the molecular structure of the substrate.  相似文献   

20.
It is known that water molecules play an important role in the biological functioning of proteins. The members of the ribonuclease A (RNase A) family of proteins, which are sequentially and structurally similar, are known to carry out the obligatory function of cleaving RNA and individually perform other diverse biological functions. Our focus is on elucidating whether the sequence and structural similarity lead to common hydration patterns, what the common hydration sites are and what the differences are. Extensive molecular dynamics simulations followed by a detailed analysis of protein-water interactions have been carried out on two members of the ribonuclease A superfamily-RNase A and angiogenin. The water residence times are analyzed and their relationship with the characteristic properties of the protein polar atoms, such as their accessible surface area and mean hydration, is studied. The capacity of the polar atoms to form hydrogen bonds with water molecules and participate in protein-water networks are investigated. The locations of such networks are identified for both proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号