首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物被膜状态的霍乱弧菌具有极强的环境适应性和超高的感染性,生物被膜的发育调控研究对霍乱弧菌的宿主感染和环境适应非常重要。本文综述了近年来霍乱弧菌生物被膜研究结果,包括霍乱弧菌生物被膜的组成、发育和环境调控,尤其着重阐述了各种环境因子对霍乱弧菌生物被膜发育的影响,包括细菌自体信号分子、自然环境因子和宿主信号分子。  相似文献   

2.
3.
4.
5.
Miller MB  Skorupski K  Lenz DH  Taylor RK  Bassler BL 《Cell》2002,110(3):303-314
The marine bacterium Vibrio harveyi possesses two quorum sensing systems (System 1 and System 2) that regulate bioluminescence. Although the Vibrio cholerae genome sequence reveals that a V. harveyi-like System 2 exists, it does not predict the existence of a V. harveyi-like System 1 or any obvious quorum sensing-controlled target genes. In this report we identify and characterize the genes encoding an additional V. cholerae autoinducer synthase and its cognate sensor. Analysis of double mutants indicates that a third as yet unidentified sensory circuit exists in V. cholerae. This quorum sensing apparatus is unusually complex, as it is composed of at least three parallel signaling channels. We show that in V. cholerae these communication systems converge to control virulence.  相似文献   

6.
Vibrio cholerae is a versatile bacterium that flourishes in diverse environments, including the human intestine, rivers, lakes, estuaries, and the ocean. Surface attachment is believed to be essential for colonization of all of these natural environments. Previous studies have demonstrated that the vps genes, which encode proteins required for exopolysaccharide synthesis and transport, are required for V. cholerae biofilm development in Luria-Bertani broth. In this work, we showed that V. cholerae forms vps-dependent biofilms and vps-independent biofilms. The vps-dependent and -independent biofilms differ in their environmental activators and in architecture. Our results suggest that environmental activators of vps-dependent biofilm development are present in freshwater, while environmental activators of vps-independent biofilm development are present in seawater. The distinct environmental requirements for the two modes of biofilm development suggest that vps-dependent biofilm development and vps-independent biofilm development may play distinct roles in the natural environment.  相似文献   

7.
Vibrio cholerae is a halophilic facultative human pathogen found in marine and estuarine environments. Accumulation of compatible solutes is important for growth of V. cholerae at NaCl concentrations greater than 250 mM. We have identified and characterized two compatible solute transporters, OpuD and PutP, that are involved in uptake of glycine betaine and proline by V. cholerae. V. cholerae does not, however, possess the bet genes, suggesting that it is unable to synthesize glycine betaine. In contrast, many Vibrio species are able to synthesize glycine betaine from choline. It has been shown that many bacteria not only synthesize but also secrete glycine betaine. We hypothesized that sharing of compatible solutes might be a mechanism for cooperativity in microbial communities. In fact, we have demonstrated that, in high-osmolarity medium, V. cholerae growth and biofilm development are enhanced by supplementation with either glycine betaine or spent media from other bacterial species. Thus, we propose that compatible solutes provided by other microorganisms may contribute to survival of V. cholerae in the marine environment through facilitation of osmoadaptation and biofilm development.  相似文献   

8.
The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, has been shown to be affected by bile. The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long-chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids - marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria.  相似文献   

9.
Induction of melanin biosynthesis in Vibrio cholerae.   总被引:3,自引:1,他引:2       下载免费PDF全文
Vibrio cholerae synthesized the pigment melanin in response to specific physiological conditions that were stressful to the bacterium. Pigmentation was induced when V. cholerae was subjected to hyperosmotic stress in conjunction with elevated growth temperatures (above 30 degrees C). The salt concentration tolerated by V. cholerae was lowered by additional abiotic factors such as acidic starting pH of the growth medium and limitation of organic nutrients. Although the amount of toxin detected in the culture supernatant decreased significantly in response to stressful culture conditions, no correlation between the physiological conditions that induced melanogenesis and expression of OmpU or cholera toxin was detected. Since conditions that induce melanin production in V. cholerae occur in both the aquatic environment and the human host, it is possible that melanogenesis has a specific function with respect to the survival of the bacterium in these habitats.  相似文献   

10.
Induction of melanin biosynthesis in Vibrio cholerae.   总被引:1,自引:0,他引:1  
Vibrio cholerae synthesized the pigment melanin in response to specific physiological conditions that were stressful to the bacterium. Pigmentation was induced when V. cholerae was subjected to hyperosmotic stress in conjunction with elevated growth temperatures (above 30 degrees C). The salt concentration tolerated by V. cholerae was lowered by additional abiotic factors such as acidic starting pH of the growth medium and limitation of organic nutrients. Although the amount of toxin detected in the culture supernatant decreased significantly in response to stressful culture conditions, no correlation between the physiological conditions that induced melanogenesis and expression of OmpU or cholera toxin was detected. Since conditions that induce melanin production in V. cholerae occur in both the aquatic environment and the human host, it is possible that melanogenesis has a specific function with respect to the survival of the bacterium in these habitats.  相似文献   

11.
During infection, the enteric pathogen Vibrio cholerae encounters a bile-containing environment. Previous studies have shown that bile and/or bile acids exert several effects on the virulence and physiology of the bacterial cells. These observations have led to the suggestion that bile acids may play a signaling role in infection. We have previously reported that the bile component deoxycholic acid blocks the general diffusion porin OmpT in a dose-dependent manner, presumably as it transits through the pore. V. cholerae colonizes the distal jejunum and ileum, where a mixture of various conjugated and unconjugated bile acids are found. In this work, we have used patch clamp electrophysiology to investigate the effects of six bile acids on OmpT. Two bile acids (deoxycholic and chenodeoxycholic acids) were found to block OmpT at physiological concentrations below 1 mM, while glycodeoxycholic acid was mildly effective and cholic, lithocholic and taurodeoxycholic acids were ineffective in this range. The block was also voltage-dependent. These observations suggest the presence of a specific binding site inside the OmpT pore. Since deconjugation is due to the activity of the endogenous flora, the preferential uptake of some unconjugated bile acids by OmpT may signal the presence of a hospitable environment. The results are also discussed in terms of the possible molecular interactions between the penetrating bile acid molecule and the channel wall.  相似文献   

12.
Bacterial surface structures called pili have been studied extensively for their role as possible colonization factors. Most sequenced Vibrio genomes predict a variety of pili genes in these organisms, including several types of type IV pili. In particular, the mannose-sensitive hemagglutinin (MSHA) and the PilA pili, also known as the chitin-regulated pilus (ChiRP), are type IVa pili commonly found in Vibrio genomes and have been shown to play a role in the colonization of Vibrio species in the environment and/or host tissue. Here, we report sequence comparisons of two type IVa pilin subunit genes, mshA and pilA, and their corresponding amino acid sequences, for several strains from the three main human pathogenic Vibrio species, V. cholerae, V. parahaemolyticus, and V. vulnificus. We identified specific groupings of these two genes in V. cholerae, whereas V. parahaemolyticus and V. vulnificus strains had no apparent allelic clusters, and these genes were strikingly divergent. These results were compared with other genes from the MSHA and PilA operons as well as another Vibrio pili from the type IVb group, the toxin co-regulated pilus (TCP) from V. cholerae. Our data suggest that a selective pressure exists to cause these strains to vary their MSHA and PilA pilin subunits. Interestingly, V. cholerae strains possessing TCP have the same allele for both mshA and pilA. In contrast, V. cholerae isolates without TCP have polymorphisms in their mshA and pilA sequences similar to what was observed for both V. parahaemolyticus and V. vulnificus. This data suggests a possible linkage between host interactions and maintaining a highly conserved type IV pili sequence in V. cholerae. Although the mechanism underlying this intriguing diversity has yet to be elucidated, our analyses are an important first step towards gaining insights into the various aspects of Vibrio ecology.  相似文献   

13.
Vibrio cholerae is a highly motile bacterium which possesses a single polar flagellum as a locomotion organelle. Motility is thought to be an important factor for the virulence of V. cholerae. The genome sequencing project of this organism is in progress, and the genes that are highly homologous to the essential genes of the Na+-driven polar flagellar motor of Vibrio alginolyticus were found in the genome database of V. cholerae. The energy source of its flagellar motor was investigated. We examined the Na+ dependence and the sensitivity to the Na+ motor-specific inhibitor of the motility of the V. cholerae strains and present the evidence that the polar flagellar motor of V. cholerae is driven by an Na+ motive force.  相似文献   

14.
15.
16.
Vibrio cholerae, the causative agent of cholera, is a natural inhabitant of the aquatic ecosystem. Chironomid (nonbiting midges) egg masses were recently found to harbour V. cholerae non-O1 and non-O139, providing a natural reservoir for the cholera bacterium. Chironomid populations and the presence of V. cholerae in chironomid egg masses were monitored. All V. cholerae isolates were able to degrade chironomid egg masses. The following virulence associated genes were detected in the bacterial isolates: hapA (100%), toxR (100%), hlyA (72%) and ompU (28%). The chironomid populations and the V. cholerae in their egg masses followed the phenological succession and interaction of host-pathogen population dynamics. A peak in the chironomid population was followed by a peak in the V. cholerae population. If such a connection is further substantiated for the pathogenic serogroups of V. cholerae in endemic areas of the disease, it may lead to a better understanding of the role of chironomids as a host for the cholera bacterium.  相似文献   

17.
Kan B  Habibi H  Schmid M  Liang W  Wang R  Wang D  Jungblut PR 《Proteomics》2004,4(10):3061-3067
The pathogen Vibrio cholerae causes severe diarrheal disease in humans. This environmental inhabitant has two distinct life cycles, in the environment and in the human small intestine, in which it differs in its multiplication behavior and virulence expression. Anaerobiosis, limitation of some nutrient elements, and excess burden from host metabolism reactants are the major stresses for V. cholerae living in intestine, in comparison to conditions in the environment and laboratory medium. For an insight into the response of V. cholerae to different microenvironments, we cultured the bacteria in aerobic and anaerobic conditions, and compared the whole cell proteome by two-dimensional electrophoresis. Among the protein spots identified, some protein species involved in aerobic respiration and the nutrient carbohydrate transporters were found to be more abundant in aerobic conditions, and some enzymes for anaerobic respiration and some stress response proteins were found more abundant in anaerobic culture. One spot corresponding to flagellin B subunit was decreased in anaerobic conditions, which suggests correlation with the meticulous regulation of bacterial motility during infection in the host intestine. This proteome analysis is the starting point for in-depth understanding of V. cholerae behavior in different environments.  相似文献   

18.
AIMS: To determine the host range of the Vibrio harveyi myovirus-like bacteriophage (VHML) and the cholera toxin conversion bacteriophage (CTX Phi) within a range of Vibrio cholerae and V. mimicus and V. harveyi, V. cholerae and V. mimicus isolates respectively. METHODS AND RESULTS: Three V. harveyi, eight V. cholerae and five V. mimicus isolates were incubated with VHML and CTX Phi. Polymerase chain reaction (PCR) was used to determine the presence of VHML and CTX Phi in infected isolates. We demonstrated that it was possible to infect one isolate of V. cholerae (isolate ACM #2773/ATCC #14035) with VHML. This isolate successfully incorporated VHML into its genome as evident by positive PCR amplification of the sequence coding part of the tail sheath of VHML. Attempts to infect all other V. cholerae and V. mimicus isolates with VHML were unsuccessful. Attempts to infect V. cholerae non-01, V. harveyi and V. mimicus isolates with CTX Phi were unsuccessful. CONCLUSIONS: Bacteriophage infection is limited by bacteriophage-exclusion systems operating within bacterial strains and these systems appear to be highly selective. One system may allow the co-existence of one bacteriophage while excluding another. VHML appears to have a narrow host range which may be related to a common receptor protein in such strains. The lack of the vibrio pathogenicity island bacteriophage (VPI Phi) in the isolates used in this study may explain why infections with CTX Phi were unsuccessful. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study has demonstrated that Vibrio spp. bacteriophages may infect other Vibrio spp.  相似文献   

19.
Vibrio cholerae, a Gram-negative bacterium belonging to the gamma-subdivision of the family Proteobacteriaceae is the etiologic agent of cholera, a devastating diarrheal disease which occurs frequently as epidemics. Any bacterial species encountering a broad spectrum of environments during the course of its life cycle is likely to develop complex regulatory systems and stress adaptation mechanisms to best survive in each environment encountered. Toxigenic V. cholerae, which has evolved from environmental nonpathogenic V. cholerae by acquisition of virulence genes, represents a paradigm for this process in that this organism naturally exists in an aquatic environment but infects human beings and cause cholera. The V. cholerae genome, which is comprised of two independent circular mega-replicons, carries the genetic determinants for the bacterium to survive both in an aquatic environment as well as in the human intestinal environment. Pathogenesis of V. cholerae involves coordinated expression of different sets of virulence associated genes, and the synergistic action of their gene products. Although the acquisition of major virulence genes and association between V. cholerae and its human host appears to be recent, and reflects a simple pathogenic strategy, the establishment of a productive infection involves the expression of many more genes that are crucial for survival and adaptation of the bacterium in the host, as well as for its onward transmission and epidemic spread. While a few of the virulence gene clusters involved directly with cholera pathogenesis have been characterized, the potential exists for identification of yet new genes which may influence the stress adaptation, pathogenesis, and epidemiological characteristics of V. cholerae. Coevolution of bacteria and mobile genetic elements (plasmids, transposons, pathogenicity islands, and phages) can determine environmental survival and pathogenic interactions between bacteria and their hosts. Besides horizontal gene transfer mediated by genetic elements and phages, the evolution of pathogenic V. cholerae involves a combination of selection mechanisms both in the host and in the environment. The occurrence of periodic epidemics of cholera in endemic areas appear to enhance this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号