首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even though the existence of the blood-borne "hibernation induction trigger" has been reported in the 13-lined ground squirrel, transfusion of plasma from hibernating rodents with other hibernating species as the recipients failed to induce the occurrence of summer hibernation. In order to verify whether the response to the "trigger" substance is species specific, the present study was carried out to compare the effect of plasma from hibernating Richardson's ground squirrels on the incidence of summer hibernation in both juvenile Richardson's and adult 13-lined ground squirrels. In two series of experiments, 13-lined ground squirrels entered hibernation quite readily independent of the treatment. The rate of occurrence of hibernation ranged from 78% after sham injection to 86% after warm saline, fresh summer active plasma, and fresh hibernating plasma, respectively. There were no differences in the number of hibernation bouts and the number of days in hibernation after each treatment. In contrast, none of the juvenile Richardson's ground squirrels entered hibernation after any of the treatments up to the end of the 8-week observation period. These results not only argue against the existence of blood-borne "trigger" substance, at least in the Richardson's ground squirrel, but also caution against the use of the 13-lined ground squirrel as a standard test animal for the bioassay of the "trigger" substance.  相似文献   

2.
M Steiner  G E Folk 《Cryobiology》1978,15(4):488-491
Among several mammalian hibernators, an endogenous circannual sequence of physiological events is believed to mediate the timing of torpor. Dawe and Spurrier (3) reported that a bloodborne substance (hibernation induction trigger) is important in initiating the torpor phase of those events in the 13-lined ground squirrel. We have reported the induction of summer hibernation among 13-lined ground squirrels using dialysates of serum from hibernating golden hamsters (a nonseasonal hibernator). While those animals receiving saline injections hibernated in 36.3 ± 2.9 days, an earlier induction (22 ± 8.8 days) occurred among those receiving the hibernation serum dialysate (P = 0.05). It was also observed that naive animals departed from a strict circannual rhythm and displayed a high incidence of hibernation, although not significant when compared to the experimental saline controls. The spontaneity of torpor in summer among the naive sample may in part be a characteristic of wild-caught animals employed in the bioassay. Nevertheless, the induction of hibernation among those animals receiving the hibernation serum preparations is supportive of the studies of Dawe and Spurrier (2, 3). That a “trigger” material apparently is present in the hamster, a phylogenetically distinct nonseasonal hibernator, suggests that a characteristic of rodent hibernators is the presence of a material which is associated with the initiation of torpor.  相似文献   

3.
S P Rosser  D S Bruce 《Cryobiology》1978,15(1):113-116
The induction of summer hibernation in the 13-lined ground squirrel (Citellus tridecemlineatus) by intravenous injection of plasma obtained from winter hibernating ground squirrels was confirmed. Hibernation was also induced by injection of urine from arousing winter ground squirrels. Results support the “trigger” theory of hibernation proposed by Dawe and Spurrier (3) and also suggest that tissues are set free from “trigger” influence during winter arousal by the excretion of “trigger.”  相似文献   

4.
1. Characterization of fetal, winter-hibernating, winter-active, summer-active and summer-induced hibernating hemoglobins of 13-lined ground squirrels (Citellus tridecemlineatus) by isoelectric focusing (IEF) pH 7.0-9.0 indicated that this molecule is extremely responsive to the various activity states of this hibernator. 2. Major alterations of ground squirrel hemoglobin occur with the varying activity states as evidenced by the distinctive changes in the isoelectric points (pIs) of these protein components. 3. Hemoglobin from winter-hibernating or summer-induced hibernating ground squirrels does not revert to a fetal type of hemoglobin. 4. The presence of an additional hemoglobin peak pI 6.55 in the summer-induced hibernator may serve as a possible assay for hibernation inducing trigger(s) (HIT) molecules under study in our laboratory.  相似文献   

5.
In an endeavor to more clearly define the physiological action of hibernation trigger (previously identified by the authors) an experiment was devised using infant ground squirrels. In one case, pregnant ground squirrel mothers were transfused intravenously with cold dialysate of serum of hibernating woodchuck, and in another case, infant (1 week to 3 week) squirrels were transfused intraperitoneally with the same material. When isolated and placed in a cold room (15 °C) at 6 weeks post partum, both the infant born of the transfused mothers, as well as the infant which has been transfused directly, hibernated in the summer. This was in contrast to controls of several kind, i.e., animals not injected, or receiving active or arousing woodchuck serum or heat-treated hibernation serum. Some details for a theory, which had been advanced in a previous article (4), were essentially substantiated by this experiment. It is our belief that this represents the first time mammalian hibernation has been observed in infant hibernators.  相似文献   

6.
Hibernation is an energy-saving strategy used by diverse species of mammals to survive winter. It is characterized by cycles between multi-day periods of torpor with low body temperature (T(b)), and short periods of rapid, spontaneous rewarming. The ability to retain cellular integrity and function throughout torpor and rewarming is a key attribute of hibernation. Livers from winter hibernators are resistant to cellular damage induced by cold storage followed by warm reperfusion. Identifying proteins that differ between the summer-sensitive and winter-protected phenotypic states is one useful approach that may elucidate the molecular mechanisms that underlie this protection. Here we employ a novel quantitative proteomics screening strategy whereby a newly-weaned 13-lined ground squirrel was metabolically labeled by ingesting heavy-isotope substituted ((15)N) Spirulina. The liver protein extract from this animal provided a common reference for quantitative evaluation of protein differences by its addition to extracts from pooled samples of summer active (SA) or winter entrance (Ent) phase hibernating ground squirrels. We identified 61 significantly different proteins between the two groups and compared them to proteins identified previously in the same samples using 2D gels. Of the 20 proteins common to the two datasets, the direction and magnitude of their differences were perfectly concordant for 18, providing confidence that both sets of altered proteins reflect bona fide differences between the two physiological states. Furthermore, the 41 novel proteins recovered in this study included many new enzymes in pathways identified previously: specifically, additional enzymes belonging to the urea cycle, amino acid and carbohydrate degradation, and lipid biosynthetic pathways were decreased, whereas enzymes involved in ketone body synthesis, fatty acid utilization, protein synthesis and gluconeogenesis were increased in the samples from entrance hibernators compared to summer active animals, providing additional specific evidence for the importance of these pathways in the hibernating phenotype.  相似文献   

7.
8.
(1) Tyrosine and tryptophan metabolism in brain and peripheral tissues were studied in hypothermic hibernating and normothermic nonhibernating 13-lined ground squirrels (Spermophilus tridecemlineatus). (2) In the hypothermic hibernating state, there were significant elevations of brain stem tyrosine, norepinephrine, and dopamine levels; forebrain norepinephrine and dopamine levels; and cerebellum norepinephrine and tyrosine levels. (3) On the other hand, plasma norepinephrine levels were significantly decreased in hypothermic hibernating squirrels while plasma tyrosine levels were increased. Kidney norepinephrine levels were significantly increased in hypothermic hibernating squirrels, while kidney tyrosine levels were decreased. Total plasma tryptophan and free plasma tryptophan were significantly reduced in hypothermic hibernating squirrels. Hepatic tyrosine aminotransferase Km and Vmax were decreased in hypothermic hibernating squirrels, while tryptophan 2,3-dioxygenase activity was not altered. Plasma and liver albumin were increased in hypothermic hibernating squirrels, while plasma and liver total protein were not altered. (4) These results demonstrate that significant changes in tyrosine and tryptophan metabolism occur in both central and peripheral tissues with concomitant alterations in metabolites during hypothermic hibernation in 13-lined ground squirrels.  相似文献   

9.
冬眠是动物应对冬季低温和食物匮乏的一种生存策略。达乌尔黄鼠(Spermophilus dauricus)是典型的贮脂类冬眠动物。为研究冬眠动物肾脏的适应机制,本实验采用组织学、血液生化分析及酶联免疫方法检测了夏季活动期(7月)、冬眠期(12月)和早春出眠后(3月)达乌尔黄鼠肾单位形态学及血清肌酐、尿素和抗利尿激素(ADH)的变化,并用qPCR方法检测了肾脏水通道蛋白基因(AQP1、AQP2和AQP3)、ADH受体(V2R)及内皮型一氧化氮合酶基因(eNOS)的表达。结果发现,冬眠期和早春出眠期的达乌尔黄鼠肾小球密度、近曲小管和远曲小管的相对管径、皮质部近曲小管数与远曲小管数比值均低于夏季活动期;冬眠期血清肌酐和尿素浓度高于夏季活动期和早春出眠期,ADH浓度及其受体V2R基因表达低于夏季活动期;冬眠期AQP1基因表达高于早春出眠期,AQP3基因表达低于夏季活动期,AQP2基因表达无显著差异;冬眠期eNOS基因表达低于早春出眠期。这些结果表明冬眠的达乌尔黄鼠表现出较低的肾功能;不同时期的水通道蛋白,eNOS及ADH表现出适应性的功能调节。该实验结果丰富了对冬眠动物肾脏适应机制的认识。  相似文献   

10.
Male 13-lined ground squirrels induced to emerge from hibernation resumed feeding and gained weight. The weight gain was supported by increases in the levels of glucose 6-phosphate dehydrogenase, L-alanine aminotransferase and carnitine acetyltransferase in the liver. Maturation of the testis occurred in a period of about 16 days spanning the time of induced arousal. The testes of hibernating males were characterized by higher levels of L-alanine aminotransferase, glucose 6-phosphate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase than the testes of aroused males. Hexokinase, carnitine acetyltransferase and citrate synthase levels were similar in the testes of hibernating and aroused males. 3-Hydroxyacyl-CoA dehydrogenase was more active and L-alanine aminotransferase less active in ground squirrel sperm than in rat sperm.  相似文献   

11.
Pancreatic enzyme levels in mammals are influenced by food intake and dietary composition. In this study, we examined the activity and expression of pancreatic amylase in a hibernating mammal, a natural model for long-term fasting. Pancreatic tissues were obtained from summer-active 13-lined ground squirrels and hibernating squirrels that had not eaten for at least 6 weeks. Amylase specific activity was reduced by approximately 50% in the torpid hibernators compared with summer squirrels, and immunoblot analysis revealed that amylase protein expression was reduced by approximately 40% in the hibernators. Similar reductions in amylase specific activity were observed in interbout euthermic hibernators. These results support a strong influence of food intake on pancreatic enzyme expression in hibernating mammals. The maintenance of basal levels of this key digestive enzyme at approximately 50% of summer values despite the extended winter fast likely facilitates the rapid resumption of digestive function after terminal arousal in the spring.  相似文献   

12.
Hibernating mammals can survive several months without feeding by limiting their carbohydrate catabolism and using triacylglycerols stored in white adipose tissue (WAT) as their primary source of fuel. Here we show that a lipolytic enzyme normally found in the gut, pancreatic triacylglycerol lipase (PTL), is expressed in WAT of hibernating 13-lined ground squirrels (Spermophilus tridecemlineatus). PTL expressed in WAT is encoded by an unusual chimeric retroviral-PTL mRNA approximately 500 bases longer than the predominant PTL message found in other ground squirrel tissues. Seasonal measurements detect the chimeric mRNA and PTL enzymatic activity in WAT before and during hibernation, with both showing their lowest observed levels 1 wk after hibernation concludes in mid-March. PTL is expressed in addition to hormone-sensitive lipase, the enzyme typically responsible for hydrolysis of triacylglycerols in WAT. Because of the distinct catalytic and regulatory properties of both enzymes, this dual-triacylglycerol lipase system provides a means by which the fuel requirements of hibernating 13-lined ground squirrels can be met without interruption.  相似文献   

13.
Androgens have benefits, such as promoting muscle growth, but also significant costs, including suppression of immune function. In many species, these trade-offs in androgen action are reflected in regulated androgen production, which is typically highest only in reproductive males. However, all non-reproductive Arctic ground squirrels, irrespective of age and sex, have high levels of androgens prior to hibernating at sub-zero temperatures. Androgens appear to be required to make muscle in summer, which, together with lipid, is then catabolized during overwinter. By contrast, most hibernating mammals catabolize only lipid. We tested the hypothesis that androgen action is selectively enhanced in Arctic ground squirrel muscle because of an upregulation of androgen receptors (ARs). Using Western blot analysis, we found that Arctic ground squirrels have AR in skeletal muscle more than four times that of Columbian ground squirrels, a related southern species that overwinters at approximately 0°C and has low pre-hibernation androgen levels. By contrast, AR in lymph nodes was equivalent in both species. Brain AR was also modestly but significantly increased in Arctic ground squirrel relative to Columbian ground squirrel. These results are consistent with the hypothesis that tissue-specific AR regulation prior to hibernation provides a mechanism whereby Arctic ground squirrels obtain the life-history benefits and mitigate the costs associated with high androgen production.  相似文献   

14.
Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.  相似文献   

15.
The intestine of hibernating ground squirrels is protected against damage by ischemia-reperfusion (I/R) injury. This resistance does not depend on the low body temperature of torpor; rather, it is exhibited during natural interbout arousals that periodically return hibernating animals to euthermia. Here we use fluorescence two-dimensional difference gel electrophoresis (DIGE) to identify protein spot differences in intestines of 13-lined ground squirrels in the sensitive and protected phases of the circannual hibernation cycle, comparing sham-treated control animals with those exposed to I/R. Protein spot differences distinguished the sham-treated summer and hibernating samples, as well as the response to I/R between summer and hibernating intestines. The majority of protein changes among these groups were attributed to a seasonal difference between summer and winter hibernators. Many of the protein spots that differed were unambiguously identified by high-pressure liquid chromatography followed by tandem mass spectrometry of their constituent peptides. Western blot analysis confirmed significant upregulation for three of the proteins, albumin, apolipoprotein A-I, and ubiquitin hydrolase L1, that were identified in the DIGE analysis as increased in sham-treated hibernating squirrels compared with sham-treated summer squirrels. This study identifies several candidate proteins that may contribute to hibernation-induced protection of the gut during natural torpor-arousal cycles and experimental I/R injury. It also reveals the importance of enterocyte maturation in defining the hibernating gut proteome and the role of changing cell populations for the differences between sham and I/R-treated summer animals.  相似文献   

16.
In two species of hibernators, hamsters and ground squirrels, erythrocytes were collected by heart puncture and the K content of the cells of hibernating individuals was compared with that of awake individuals. The K concentration of hamsters did not decline significantly during each bout of hibernation (maximum period of 5 days) but in long-term bouts in ground squirrels (i.e. more than 5 days) the K concentration of cells dropped significantly. When ground squirrels were allowed to rewarm the K content of cells rose toward normal values within a few hours. Erythrocytes of both hamsters and ground squirrels lose K more slowly than those of guinea pigs (nonhibernators) when stored in vitro for up to 10 days at 5°C. In ground squirrels the rate of loss of K during storage is the same as in vivo during hibernation, and stored cells taken from hibernating ground squirrels also lose K at the same rate. The rate of loss of K from guinea pig cells corresponded with that predicted from passive diffusion unopposed by transport. The actual rate of loss of K from ground squirrel cells was slower than such a predicted rate but corresponded with it when glucose was omitted from the storage medium or ouabain was added to it. Despite the slight loss of K that may occur in hibernation, therefore, the cells of hibernators are more cold adapted than those of a nonhibernating mammal, and this adaptation depends in part upon active transport.  相似文献   

17.
18.
19.
Mammalian hibernation is associated with several events that can affect programmed cell death (apoptosis) in nonhibernators, including marked changes in blood flow, extended fasting, and oxidative stress. However, the effect of hibernation on apoptosis is poorly understood. Here, we investigated apoptosis and expression of proteins involved in apoptotic pathways in intestinal mucosa of summer and hibernating ground squirrels. We used terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) to identify possible apoptotic enterocytes in small intestine of summer squirrels and hibernating squirrels throughout the winter. Nuclear TUNEL staining increased as hibernation progressed, but the staining pattern was diffuse and not accompanied by chromatin condensation or apoptotic bodies. Electrophoresis of mucosal DNA revealed no ladders typical of apoptosis. Nuclear levels of proapoptotic p53 protein were fourfold less in hibernators compared with summer squirrels. A 12-fold increase in anti-apoptotic Bcl-x(L) compared with a 2-fold increase in proapoptotic Bax suggested a balance in favor of antiapoptotic signaling in hibernators. There was no change in Bcl-2 protein expression but phospho-Bcl-2 increased in mucosa of hibernators. Hibernation had minimal effects on expression of active caspase-8 or -9, whereas caspase-3-specific activity was lower in hibernators during an interbout arousal compared with summer squirrels. Expression of the prosurvival protein Akt increased 20-fold during hibernation, but phospho-Akt was not altered. These data provide evidence for enhanced expression of antiapoptotic proteins during hibernation that may promote enterocyte survival in a pro-oxidative, proapoptotic environment.  相似文献   

20.
In the Arctic ground squirrel Citellus parryi, thyroxine and triiodothyronine concentrations in the peripheral blood have been determined by RIA in various seasons and during a short hibernation period. It was shown that during hibernation (December-February), hormonal concentration is higher than during homoiothermal period (August-October). The highest concentration of the thyroid hormones was found in hibernating animals in January. The data obtained indicate that thyroid hormones are involved in control of hibernation of the species investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号