首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlled conditions have been found that give complete reactivation and long term stabilization of rhodanese (EC 2.8.1.1) after oxidative inactivation by hydrogen peroxide. Inactivated rhodanese was completely reactivated by reductants such as thioglycolic acid (TGA) (100 mM) and dithiothreitol (DTT) (100 mM) or the substrate thiosulfate (100 mM) if these reagents were added soon after inactivation. Reactivability fell in a biphasic first order process. At pH 7.5, in the presence of DTT inactive rhodanese lost 40% of its reactivability in less than 5 min, and the remaining 60% was lost more gradually (t 1/2 = 3.5 h). TGA reactivated better than DTT, and the rapid phase was much less prominent. If excess reagents were removed by gel filtration immediately after inactivation, there was time-independent and complete reactivability with TGA for at least 24 h, and the resulting samples were stable. Reactivable enzyme was resistant to proteolysis and had a fluorescence maximum at 335 nm, just as the native protein. Oxidized rhodanese, Partially reactivated by DTT, was unstable and lost activity upon further incubation. This inactive enzyme was fully reactivated by 200 mM TGA. Also, the enzyme could be reactivated by arsenite and high concentrations of cyanide. Addition of hydrogen peroxide (40-fold molar excess) to inactive rhodanese after column chromatography initiated a time-dependent loss of reactivability. This inactivation was a single first order process (t 1/2 = 25 min). Sulfhydryl titers showed that enzyme could be fully reactivated after the loss of either one or two sulfhydryl groups. Irreversibly inactivated enzyme showed the loss of one sulfhydryl group even after extensive reduction with TGA. The results are consistent with a two-stage oxidation of rhodanese. In the first stage there can form sulfenyl and/or disulfide derivative(s) at the active site sulfhydryl that are reducible by thioglycolate. A second stage could give alternate or additional oxidation states that are not easily reducible by reagents tried to date.  相似文献   

2.
When air oxidized, partially inactivated rhodanese (EC 2.8.1.1) is treated with dithiothreitol (DTT) to regenerate the reduced essential sulfhydryl group there is an initial reactivation followed by an anomalous slower inactivation. Fully active enzyme shows only inactivation. The inactivated enzyme may be completely reactivated on long incubation with the substrate thiosulfate ion. None of the normal potentialities of DTT appear to be responsible for the inactivation. The results are interpreted in terms of disulfide formation between DTT and an essential enzymic sulfhydryl group with the resulting complex being stabilized by secondary interactions which are particularly favorable due to similarities between DTT and lipoic acid--a normal sulfur acceptor substrate.  相似文献   

3.
A sulfurtransferase has been purified to apparent homogeneity from the prokaryote Acinetobacter calcoaceticus lwoffi by conventional protein fractionation techniques. Steady-state kinetic studies of the enzyme revealed that its formal mechanism varies with the acceptor substrate employed. With inorganic thiosulfate as the sulfane sulfur-donor substrate and cyanide anion as the acceptor, the enzyme was shown to catalyze the reaction by a double displacement mechanism like that of mammalian rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). In contrast, with a thiol as the acceptor substrate at relatively high concentrations, the reaction proceeds by a single displacement mechanism, reminiscent of catalysis by another sulfur-transferase, thiosulfate reductase, glutathione-dependent (EC 2.8.1.3). When dithiothreitol is the acceptor substrate, the enzyme cycles through both the single and double displacement pathways, with the flux through each depending differentially on the concentration of dithiothreitol employed. In view of both the relaxed acceptor substrate specificity and the corresponding variability of formal mechanism, the more general name of sulfane sulfurtransferase is proposed for this bacterial enzyme.  相似文献   

4.
A study was made on the effects of DL-dihydrolipoate, lipoate and iron-sulfur proteins on the activity of rhodanese (EC 2.8.1.1) with dihydrolipoate or cyanide as acceptors. DL-Dihydrolipoate inactivates rhodanese, lipoate does not, and the opposite occurs with the sulfur-free form of the transferase. The observed effects vary with the sulfane sulfur acceptor from rhodanese (i.e., dihydrolipoate or cyanide) and depend on intramolecular oxidation of the catalytic sulfhydryl or on formation of a mixed disulfide with dihydrolipoate. Thiosulfate protects against inactivation by reloading the active-site cysteine with persulfide sulfur. The inhibition of sulfur transfer by iron-sulfur proteins appears related to the amount of native iron-sulfur structure interacting with rhodanese. The implications of the results for a possible biological role of rhodanese are considered.  相似文献   

5.
The azo dye 4-(dimethylamino)-4'-azobenzene (DAB) thiosulfonate anion can serve as a sulfur-donor substrate for rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) and for thiosulfate reductase (EC unassigned) with cyanide anion and GSH, respectively, as acceptor substrates. In either case, the dye product is DAB sulfinate, which differs substantially in light absorption at 500 nm. Moreover, DAB sulfinate can serve as a sulfur-acceptor substrate for rhodanese with either inorganic thiosulfate or a colorless thiosulfonate anion as donor, and this reaction provides a second chromogenic assay procedure.  相似文献   

6.
THiocystine (bis-[2-amino-2-carboxyethyl]trisulfide) is a natural substrate for rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). Analogs of thiocystine were prepared by eliminating the carboxyl or amino group or by lengthening the carbon chain. Of these only homothiocystine (bis-[2-amino-2-carboxypropyl]trisulfide) had appreciable activity as a substrate. At pH 8.6, the optimum for rhodanese, transfer of sulfane sulfur to cyanide in the presence of rhodanese was nonspecific. Only the sulfane sulfur of 35S-labeled thiocystine was transferred to rhodanese. Thus, thiocystine and thiosulfate both produce a rhodanese persulfide as a stable intermediate in sulfur transfer.  相似文献   

7.
The enzyme rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) is inactivated on incubation with reducing sugars such as glucose, mannose, or fructose, but is stable with non-reducing sugars or related polyhydroxy compounds. The enzyme is inactivated with (ES) or without (E) the transferable sulfur atom, although E is considerably more sensitive, and inactivation is accentuated by cyanide. Inactivation of E is accompanied by increased proteolytic susceptibility, a decreased sulfhydryl titer, a red-shift and quenching of the protein fluorescence, and the appearance of hydrophobic surfaces. Superoxide dismutase and/or catalase protect rhodanese. Inactive enzyme can be partially reactivated during assay and almost completely reactivated by incubation with thiosulfate, lauryl maltoside, and 2-mercaptoethanol. These results are similar to those observed when rhodanese is inactivated by hydrogen peroxide. These observations, as well as the cyanide-dependent, oxidative inactivation by phenylglyoxal, are explained by invoking the formation of reactive oxygen species such as superoxide or hydrogen peroxide from autooxidation of alpha-hydroxy carbonyl compounds, which can be facilitated by cyanide.  相似文献   

8.
Rhodanese is oxidatively inactivated by several reagents, some of which are not normally considered oxidants. Rhodanese, in a form not containing persulfide sulfur (E), was inactivated by phenylglyoxal under conditions where disulfides are formed. There was the concomitant increase in the fluorescence of the apolar probe 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bisANS). At 0.2 mg/ml protein, there was no turbidity, while at 1 mg/ml, turbidity formed after an induction period of 23 min. Phenylglyoxal-inactivated E was extensively digested by endoproteinase glutamate C (V8 protease) to give two discrete high molecular weight fragments (Mr = 29,500 and 16,000). Enzymatically active E or ES, the form of rhodanese containing transferred sulfur (Mr = 33,000) was totally refractory to V8 protease and gave only small fluorescent enhancement of bisANS. Phenylglyoxal inactivated ES (reaction at arginine) gave very little fluorescence enhancement of bisANS and was not digested by V8. Hydrogen peroxide rapidly inactivated E (t1/2 less than 2 min) giving a slow increase in bisANS fluorescence (t1/2 greater than 10 min) identical to that observed with phenylglyoxal. The turbidity also increased after an induction period of approximately 30 min. Inactivation of E by hydrogen peroxide gave the same digestion pattern as that observed with phenylglyoxal inactivation. The turbidity was associated with the formation of disulfide-bonded structures that formed with the stoichiometry of E, 2E, 4E, 6E, 8E, etc. relative to the native enzyme, E. E was inactivated with several other reagents that lead to oxidatively inactivated rhodanese including NADH, dithiothreitol, mercaptoethanol, and m-dinitrobenzene. Enzyme inactivated with dithiothreitol or NADH gave an identical digestion pattern as above. In addition, with the exception of NADH which could not be used due to optical interference, each of the reagents gave rise to increased fluorescence of bisANS after inactivation. The results are consistent with a model in which the oxidized rhodanese resulting from diverse treatments is in a new conformation that has extensive exposed apolar surfaces and can form both noncovalent and disulfide-bonded aggregates.  相似文献   

9.
Properties of an Escherichia coli rhodanese   总被引:2,自引:0,他引:2  
A rhodanese enzyme of less than 20,000 molecular weight has been purified from Escherichia coli. The enzyme is accessible to substrates upon addition of whole cells to standard assay mixtures. This rhodanese has a Stokes radius of 17 A which for a globular protein corresponds to a molecular weight close to 14,000. It undergoes autoxidation to a polymeric form which is probably an inert dimer. Enzyme inactivated by oxidation can be reactivated by millimolar concentrations of cysteine. Steady-state initial velocity measurements indicate that the enzyme catalyzes the transfer of sulfane sulfur by way of a double displacement mechanism with formation of a covalent enzyme-sulfur intermediate. The turnover number for the enzyme-catalyzed reaction, with thiosulfate as donor substrate and cyanide ion as the sulfur acceptor, is 260 s-1. This value corresponds to a catalytic efficiency 60% of that measured for a previously characterized bovine liver enzyme of more than twice the molecular weight. Furthermore, KmCN is 24 mM which is 2 orders of magnitude higher than the value observed previously for the bovine enzyme. Evidence from chemical inactivation studies implicates an essential sulfhydryl group in the enzyme activity. It is proposed that this group is the site of substrate-sulfur binding in the obligatory enzyme-sulfur intermediate. Furthermore, a cationic site important for binding of the donor thiosulfate is tentatively identified from anion inhibition studies. Tests of alternate acceptor substrates indicate that the physiological dithiol, dihydrolipoate, is a more efficient acceptor than cyanide ion for the enzyme-bound sulfur. Of possibly greater physiological significance, it has been found that the enzyme catalyzes the formation of iron-sulfur centers. Other work indicates the E. coli rhodanese is subject to catabolite repression and suggests a physiological role for the enzyme in aerobic energy metabolism.  相似文献   

10.
The dansyl derivative 5-dimethylamino-1-naphthalene thiosulfonate (DANTS) can serve as a sulfane sulfur-donor substrate for several of the sulfurtransferases, the reaction being dependent on the acceptor substrates supplied. Enzymatic cleavage of the sulfur-sulfur bond of DANTS releases the intrinsic fluorescence of the molecule, with an emission maximum of 500-510 nm (excitation at 325 nm). This process permits selective visualization of active sulfurtransferase enzymes separated in nondenaturing polyacrylamide gels, even from impure preparations. This technique was used to locate rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), thiosulfate reductase (EC unassigned), and a recently isolated prokaryotic enzyme that has been called sulfane sulfurtransferase. In addition, a refinement of the thiosulfate reductase assay technique is reported.  相似文献   

11.
The stability constants for the calcium and magnesium complexes of rhodanese are >105m?1 at both high and low substrate concentrations. The stoichiometry of alkaline earth metal ion binding totals close to 1 per 18,500 molecular weight. The usual assay reagents contain sufficient amounts of these metal ions to maintain added enzyme in its metal-complexed form. When reaction mixtures are treated with oxalate to remove calcium ions, inhibition of rhodanese activity is virtually complete under circumstances such that the contribution of magnesium ion is low.Zinc and a number of transition metal ions are inhibitors of rhodanese activity. Studies of the concentration dependence of these effects with zinc, copper, and nickel showed that: 1) Some cyanide complexes of these metals are competitive with the donor substrate, thiosulfate ion. The binding of the copper and zinc complexes is mutually competitive. 2) Another cyanide species of copper appears to combine with the free enzyme to form a functionally active complex. 3) The zinc cyanide species with a net positive charge is an inhibitor competitive with the acceptor substrate, cyanide ion.All of these observations are consistent with a model in which metal ions serve as the electrophilic site of rhodanese.  相似文献   

12.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (Ks) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reversed by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

13.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (K5) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate-similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reserved by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

14.
A major catalytic difference between the two most common isoforms of bovine liver mitochondrial rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) has been observed. Both isoforms were shown to be capable of using reduced thioredoxin as a sulfur-acceptor substrate. However, only the less negative form in common with the recombinant mammalian rhodanese expressed in E. coli, can also catalyze the direct oxidation of reduced thioredoxin evidently by reactive oxygen species. These activities are understood in terms of the established persulfide structure (R-S-SH) of the covalently substituted rhodanese in the sulfurtransferase reaction and an analogous sulfenic acid structure (R-S-OH) when the enzyme acts as a thioredoxin oxidase. The observations suggest a role for one rhodanese isoform in the detoxication of intramitochondrial oxygen free radicals.  相似文献   

15.
The reaction of beef kidney rhodanese with selenosulfate was studied. The selenium-treated enzyme shows an absorption spectrum with a maximum at 375 nm attributable to a sulfoselenide group. This absorption is bleached by addition of cyanide. After cyanide treatment stoichiometric amount of selenocyanate can be found. The intrinsic fluorescence of rhodanese is quenched by addition of stoichiometric selenosulfate. This effect can be reversed by cyanide or sulfite but not by selenite or glutathione. By comparison with model complexes the selenium-rhodanese intermediate was identified as a cysteinyl-selenium derivative.  相似文献   

16.
The enzyme rhodanese (thiosulfate sulfurtransferase; EC 2.8.1.1) is inactivated with a half-time of approximately 3 min when incubated with 50 mM NADH. NAD+, however, has virtually no effect on the activity. Inactivation can be prevented by the inclusion of the substrate thiosulfate. The concentration of thiosulfate giving half-protection is 0.038 mM. In addition, NADH, but not NAD+, is a competitive inhibitor with respect to thiosulfate in the catalyzed reaction (Ki = 8.3 mM). Fluorescence studies are consistent with a time-dependent oxidation of NADH in the presence of rhodanese. The sulfur-free form of rhodanese is more rapidly inactivated than the sulfur-containing form. Spectrophotometric titrations show that inactivation is accompanied by the loss of two free SH groups per enzyme molecule. Inactivation is prevented by the exclusion of air and the inclusion of EDTA (1 mM), and the enzyme activity can be largely protected by incubation with superoxide dismutase or catalase. Rhodanese, inactivated with NADH, can be reactivated by incubation with the substrate thiosulfate (75 mM) for 48 h or more rapidly, but only partially, by incubating with 180 mM dithiothreitol. It is concluded that, in the presence of rhodanese, NADH can be oxidized by molecular oxygen and produce intermediates of oxygen reduction, such as superoxide and/or hydrogen peroxide, that can inactivate the enzyme with consequent formation of an intraprotein disulfide. In addition, NADH, but not NAD+, can reversibly bind to the active site region in competition with thiosulfate. These data are of interest in view of x-ray studies that show structural similarities between rhodanese and nucleotide binding proteins.  相似文献   

17.
The conditions required to obtain rhodanese inactivation in the presence of dithiothreitol indicate the involvement of hydrogen peroxide produced by metal-ion catalyzed oxidation of dithiothreitol. Inhibition of dithiothreitol oxidation by a chelating agent, or by removal of hydrogen peroxide by catalase prevents the enzyme inactivation. The inactivated enzyme contains a disulfide bond resulting from the oxidation of the catalytic sulfhydryl group and another sulfhydryl group close to it. This disulfide might be formed via a sulfenic intermediate.  相似文献   

18.
Spectral and kinetic studies of the interaction of N-methylnicotinamide chloride and nicotinamide with the enzyme thiosulphate sulphurtransferase (thiosulphate: cyanide sulfurtransferase, EC 2.8.1.1) (also known as rhodanese) have been performed and compared with previous inhibition data obtained with N-1-(4-pyridyl)pyridinium chloride (NPP). Like NPP both N-methylnicotinamide chloride and nicotinamide are competitive inhibitors of rhodanese with respect to the substrate thiosulfate. Rhodanese binding of N-methylnicotinamide chloride gives rise to no charge transfer absorbtion band. In addition, the free energy of interaction (deltaG0) of NPP with rhodanese is approximately equal to the sum of the individual deltaG0 values of MNA and NA. These compounds are analogous to the two halves of the NPP structure. We conclude that NPP and N-methylnicotinamide chloride are not bound via a charge transfer mechanism. The major stabilizing influence appears to be an ionic interaction with an anionic enzyme site with accessory apolar stabilization. It is postulated that the ionized active site sulfhydryl group in rhodanese could provide the ionic site.  相似文献   

19.
Considerably larger quantities of cyanide are required to solubilize gold following the bio-oxidation of gold-bearing ores compared with oxidation by physical-chemical processes. A possible cause of this excessive cyanide consumption is the presence of the enzyme rhodanese. Rhodanese activities were determined for the bacteria most commonly encountered in bio-oxidation tanks. Activities of between 6.4 and 8.2 micromol SCN min(-1) mg protein(-1) were obtained for crude enzyme extracts of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Thiobacillus caldus, but no rhodanese activity was detected in Leptospirillum ferrooxidans. Rhodanese activities 2-2.5-fold higher were found in the total mixed cell mass from a bio-oxidation plant. T. ferrooxidans synthesized rhodanese irrespective of whether it was grown on iron or sulphur. With a PCR-based detection technique, only L. ferrooxidans and T. caldus cells were detected in the bio-oxidation tanks. As no rhodanese activity was associated with L. ferrooxidans, it was concluded that T. caldus was responsible for all of the rhodanese activity. Production of rhodanese by T. caldus in batch culture was growth phase-dependent and highest during early stationary phase. Although the sulphur-oxidizing bacteria were clearly able to convert cyanide to thiocyanate, it is unlikely that this rhodanese activity is responsible for the excessive cyanide wastage at the high pH values associated with the gold solubilization process.  相似文献   

20.
We report a purification of bovine liver rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) using column chromatography under conditions that take advantage of recent information regarding the structure and stability of this enzyme. At low pH (e.g., pH 4-6), rhodanese is stabilized against inactivation processes. By maintaining rhodanese at low pH, column chromatography, and especially ion-exchange chromatography, becomes practical, without loss of enzymatic activity. A purification method involving the sequential use of cation-exchange, size-exclusion, and hydrophobic-interaction chromatography was developed, and rhodanese was purified with good yield to electrophoretic purity and high specific activity. Previous methods for purifying bovine liver rhodanese employ repeated ammonium sulfate fractionations and crystallization of the rhodanese. In these methods, it is difficult to separate rhodanese from yellow-brown contaminants in the final stages of the procedures. Here, yellow-brown contaminants, which copurify with rhodanese on the first two columns, are completely resolved by hydrophobic interaction chromatography. This method can be readily scaled up, requires no special equipment, eliminates the variability inherent in previous methods, and is less dependent upon experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号