首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here that reduced pyridine nucleotides and reduced glutathione result in an oxidation of Amplex Red by dioxygen that is dependent on the presence of horseradish peroxidase (HRP). Concentrations of NADH and glutathione typically found in biological systems result in the oxidation of Amplex Red at a rate comparable to that produced, for example, by respiring mitochondria. The effects of NADH and glutathione in this assay system are likely to be the result of H(2)O(2) generation via a superoxide intermediate because both catalase and superoxide dismutase prevent the oxidation of Amplex Red. These results suggest caution in the assay of H(2)O(2) production in biological systems using the Amplex Red/HRP because the assay will also report the mobilization of NADH or glutathione. However, the interruption of this process by the addition of superoxide dismutase offers a simple and reliable method for establishing the source of the oxidant signal.  相似文献   

2.
Two strains of Lactobacillus plantarum accumulated H2O2 when grown aerobically in a complex glucose based medium. The H2O2 accumulation did not occur immediately on exposure of the culture to O2 but was delayed for a time which, in the case of one strain, was dependent on the amount of inoculum used to seed the culture. The accumulation was always preceded by an increase in the rate of O2 utilization by the cultures. The latter coincided approximately with an increase in specific activity of NADH oxidase, pyruvate oxidase and NADH peroxidase. H2O2 was not a product of NADH oxidase in vitro but was formed in substantial quantities from O2 during oxidation of pyruvate. The three enzymes were induced by O2 and H2O2; the induction of NADH oxidase responded to lower levels of O2 (but not of H2O2) than the pyruvate oxidase or the NADH peroxidase.Abbreviations MRSG Mann, Rogosa and Sharpe medium (1960) with glucose as fermentation source - TPP thiamin pyrophosphate  相似文献   

3.
从健康人口腔中分离的寡发酵链球菌(Streptococcus oligofermentans)能够产生大量的过氧化氢,可能具有抑制致病菌的潜力。为了研究该细菌产过氧化氢的特性,检测了其在不同生长时期和从不同底物产过氧化氢的能力。结果表明,寡发酵链球菌从对数生长早期就开始产过氧化氢,在对数生长后期及稳定期过氧化氢产量达到最高,随后下降。在PYG培养基中,寡发酵链球菌所产的过氧化氢主要来源于大豆蛋白胨和酵母提取物;而代谢终产物乳酸也可作为过氧化氢产生的底物。对3种可能与过氧化氢生成有关的氧化酶的酶活测定表明,寡发酵链球菌具有乳酸氧化酶(LOX)及NADH氧化酶(NOX)的活性,说明其过氧化氢的产生主要依赖于这两种酶的活力。  相似文献   

4.
The response of Haemonchus contortus to oxidative stress in vitro was examined by measuring catalase activities in adult and L4 stage worms exposed to hydrogen peroxide generated by a glucose/glucose oxidase system. Adult nematodes showed increases of up to 2.3-fold in catalase activity after 42 h exposure to the peroxide. L4 nematodes showed up to 4.6-fold induction. A two-stage dose-response was apparent, with catalase activities increasing as the peroxide levels increased, before a return to control levels at higher peroxide concentrations, most likely reflecting a balance between induction and toxicity of the inducing agent itself. Adult nematodes exposed to low levels of peroxide for 24h (hence, having enhanced catalase activities) showed an ability to tolerate subsequent exposure to toxic levels of the peroxide compared to worms with no pre-exposure. An increase of up to approximately threefold in the LC(50) of the hydrogen peroxide generating system was observed after hydrogen peroxide pre-exposure. This indicates that exposure to low oxidant levels lead to an increase in defensive enzyme activities, which allows the nematode to survive subsequent oxidant threats more effectively. The ability of H contortus to increase its catalase activity may be crucial in allowing it to respond to the production of reactive oxygen species by host phagocytes in vivo.  相似文献   

5.
A catalytic amount of cytochrome c (cyto-c) added to the incubation medium of isolated mitochondria promotes the transfer of reducing equivalents from extramitochondrial nicotinamide adenine dinucleotide in its reduced state (NADH) to molecular oxygen inside the mitochondria, a process coupled to the generation of a membrane potential. This mimics in many aspects the early stages of those apoptotic pathways characterized by the persistence of mitochondrial membrane potential but with cyto-c already exported into the cytosol. In cyclosporin-sensitive and calcium-induced mitochondrial permeability transition (MPT) a release of cyto-c can also be observed. However, in MPT uncoupled respiration associated with mitochondrial swelling and preceded by the complete dissipation of the membrane potential which cannot be restored with ATP addition or any other source of energy is immediately activated. The results obtained and discussed with regard to intactness of mitochondrial preparations indicate that MPT could be an apoptotic event downstream but not upstream of cyto-c release linked to the energy-requiring processes. In the early stages of apoptosis cytosolic cyto-c participates in the activation of caspases and at the same time can promote the oxidation of cytosolic NADH, making more energy available for the correct execution of the cell death program. This hypothesis is not in contrast with available data in the literature showing that cyto-c is present in the cytosol of both control and apoptosis-induced cultured cell lines.  相似文献   

6.
Hou YZ  Zhao GR  Yang J  Yuan YJ  Zhu GG  Hiltunen R 《Life sciences》2004,75(14):1775-1786
Ligusticum chuanxiong and Angelica sinensis have been widely used in traditional Chinese medicine to treat some pathological settings such as atherosclerosis and hypertension. We determined the protective effect of the extract of Ligusticum chuanxiong and Angelica sinensis (ELCAS) on human umbilical vein endothelial cells (ECV304) damage induced by hydrogen peroxide. ECV304 cells were pre-treated with ELCAS and exposed to 5 mM hydrogen peroxide. The results show that ELCAS dose- and time-dependently protected ECV304 cells against hydrogen peroxide damage and suppressed the production of reactive oxygen species (ROS). The decrement of ROS may be associated with increased activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Western blot analysis revealed that ELCAS significantly increased the phosphorylation of ERK and promoted eNOS expression. These observations indicate that ELCAS protected ECV304 cells against hydrogen peroxide damage by enhancing the antioxidative ability, activating ERK and eNOS signaling pathway. Our data also provide new evidence of Ligusticum chuanxiong and Angelica sinensis in preventing both cardiovascular and cerebrovascular diseases.  相似文献   

7.
After determining that hydrogen peroxide (H2O2) accumulation induced by a fungal elicitor from Aspergillus niger was from the superoxide dismutase-catalyzed dismutation of superoxide radical, the site of H2O2 generation in cell suspension cultures of Taxus chinensis was studied. The results showed that 90% and 10% of the elicitor-induced H2O2 accumulation respectively appeared in intracellular and extracellular fractions of cells, and that the elicitor-induced H2O2 accumulation in protoplasts and plasma membranes was similar to that in intact cells, indicating that the site of H2O2 accumulation was plasma membranes but not in extracellular fraction of Taxus cells. The H2O2 forming enzyme was also investigated. The elicitor-induced H2O2 accumulation in intact cells was not changed by loss of apoplastic peroxidase (POD) by the washing, and the H2O2 accumulation in plasma membranes was inhibited by the mammalian neutrophil NAD(P)H oxidase inhibitor diphenylene iodonium (DPI), but was slightly affected by exogenous POD and its inhibitor. Furthermore, in plasma membranes, the H2O2 accumulation was more significantly enhanced by NADPH than by NADH, and the former was more obviously decreased by DPI than the latter. The present results show that NADPH oxidase in plasma membranes is involved in H2O2 accumulation in fungal elicitor-induced Taxus chinensis cell cultures.  相似文献   

8.
刘洪庆  车永梅  赵方贵  杨凤玲  刘新 《生态学报》2012,32(19):6085-6091
以烟草((Nicotiana tabacum,品种CF90NF)为寄主,苗期接种丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae,G.m),测定G.m与烟草共生过程中烟草根部H2O2含量以及多胺氧化酶(PAO)和过氧化物酶(POD)活性;研究外源H2O2对G.m侵染烟草的影响以及H2O2清除剂和合成抑制剂对烟草侧根H2O2含量及烟草侧根和菌丝中H2O2荧光强度的影响,以探究H2O2在AM真菌侵染烟草过程中的作用。结果表明,接种G.m 20d后烟草侧根中出现H2O2含量的猝发,一定浓度的外源H2O2促进G.m对烟草的侵染,而H2O2清除剂抗坏血酸(AsA)显著削弱烟草侧根和菌丝中的H2O2荧光强度,降低G.m对烟草的侵染率,表明H2O2参与G.m与烟草共生过程;在G.m与烟草共生过程中,PAO和POD活性显著升高,PAO抑制剂二氨基十二烷(DADD)和POD抑制剂水杨羟肟酸(SHAM)显著降低烟草侧根中H2O2荧光强度,对菌丝中H2O2荧光强度无显著影响,表明烟草根部和G.m均可产生H2O2,PAO和POD参与烟草侧根中H2O2的合成,菌丝中可能存在其他来源的H2O2。  相似文献   

9.
The intricate, and often polarized, ingrowth walls of transfer cells (TCs) amplify their plasma membrane surface areas to confer a transport function of supporting high rates of nutrient exchange across apo-/symplasmic interfaces. The TC ingrowth wall comprises a uniform wall layer on which wall ingrowths are deposited. Signals and signal cascades inducing trans-differentiation events leading to formation of TC ingrowth walls are poorly understood. Vicia faba cotyledons offer a robust experimental model to examine TC induction as, when placed into culture, their adaxial epidermal cells rapidly (h) and synchronously form polarized ingrowth walls accessible for experimental observations. Using this model, we recently reported findings consistent with extracellular hydrogen peroxide, produced through a respiratory burst oxidase homolog/superoxide dismutase pathway, initiating cell wall biosynthetic activity and providing directional information guiding deposition of the polarized uniform wall. Our conclusions rested on observations derived from pharmacological manipulations of hydrogen peroxide production and correlative gene expression data sets. A series of additional studies were undertaken, the results of which verify that extracellular hydrogen peroxide contributes to regulating ingrowth wall formation and is generated by a respiratory burst oxidase homolog/superoxide dismutase pathway.  相似文献   

10.
As part of its aerobic metabolism, Streptococcus pneumoniae generates high levels of H2O2 by pyruvate oxidase (SpxB), which can be further reduced to yield the damaging hydroxyl radicals via the Fenton reaction. A universal conserved adaptation response observed among bacteria is the adjustment of the membrane fatty acids to various growth conditions. The aim of the present study was to reveal the effect of endogenous reactive oxygen species (ROS) formation on membrane composition of S. pneumoniae. Blocking carbon aerobic metabolism, by growing the bacteria at anaerobic conditions or by the truncation of the spxB gene, resulted in a significant enhancement in fatty acid unsaturation, mainly cis-vaccenic acid. Moreover, reducing the level of OH· by growing the bacteria at acidic pH, or in the presence of an OH· scavenger (salicylate), resulted in increased fatty acid unsaturation, similar to that obtained under anaerobic conditions. RT-PCR results demonstrated that this change does not originate from a change in mRNA expression level of the fatty acid synthase II genes. We suggest that endogenous ROS play an important regulatory role in membrane adaptation, allowing the survival of this anaerobic organism at aerobic environments of the host.  相似文献   

11.
During host cell infection, Trypanosoma cruzi parasites are exposed to reactive oxygen and nitrogen species. As part of their antioxidant defense systems, they express two tryparedoxin peroxidases (TXNPx), thiol-dependent peroxidases members of the peroxiredoxin family. In this work, we report a kinetic characterization of cytosolic (c-TXNPx) and mitochondrial (m-TXNPx) tryparedoxin peroxidases from T. cruzi. Both c-TXNPx and m-TXNPx rapidly reduced hydrogen peroxide (k = 3.0 × 107 and 6 × 106 M−1 s−1 at pH 7.4 and 25 °C, respectively) and peroxynitrite (k = 1.0 × 106 and k = 1.8 × 107 M−1 s−1 at pH 7.4 and 25 °C, respectively). The reductive part of the catalytic cycle was also studied, and the rate constant for the reduction of c-TXNPx by tryparedoxin I was 1.3 × 106 M−1 s−1. The catalytic role of two conserved cysteine residues in both TXNPxs was confirmed with the identification of Cys52 and Cys173 (in c-TXNPX) and Cys81 and Cys204 (in m-TXNPx) as the peroxidatic and resolving cysteines, respectively. Our results indicate that mitochondrial and cytosolic TXNPxs from T. cruzi are highly efficient peroxidases that reduce hydrogen peroxide and peroxynitrite, and contribute to the understanding of their role as virulence factors reported in vivo.  相似文献   

12.
Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosine 5'-triphosphate was detected with the aid of glucose-6-phosphate dehydrogenase or NADP(+)-isocitrate dehydrogenase, iodonitrotetrazolium chloride, and phenazine methosulfate. The bands at the respective activity sites were excised and subjected to native and denaturing two-dimensional electrophoresis for the determination of protein levels. Hence this novel electrophoretic method allows the easy detection of NADK, a critical enzyme involved in pyridine homeostasis. Furthermore, this technique allowed the monitoring of the activity and expression of this kinase in various biological systems.  相似文献   

13.
Czarna M  Jarmuszkiewicz W 《FEBS letters》2005,579(14):3136-3140
Mitochondria of amoeba Acanthamoeba castellanii were used to determine the role of two energy-dissipating systems, i.e., a free fatty acid (FFA)-activated, purine nucleotide-inhibited uncoupling protein (AcUCP) and a FFA-insensitive, purine nucleotide-activated ubiquinol alternative oxidase (AcAOX), in decreasing reactive oxygen species production in unicellular organisms. It is shown that the activation of AcUCP by externally added FFA resulted in a strong decrease in H2O2 production, whilst the inhibition of the FFA acid-induced AcUCP activity by GDP or addition of bovine serum albumin (BSA) enhanced production of H2O2. Similarly, the activation of antimycin-resistant AcAOX-mediated respiration by GMP significantly lowered H2O2 production, while inhibition of the oxidase by benzohydroxamate cancelled the GMP-induced effect on H2O2 production. When active together, both energy-dissipating systems revealed a cumulative effect on decreasing H2O2 formation. The results suggest that protection against mitochondrial oxidative stress may be a physiological role of AOX and UCP in unicellulars, such as A. castellanii.  相似文献   

14.
NfrA1 nitroreductase from the Gram-positive bacterium Bacillus subtilis is a member of the NAD(P)H/FMN oxidoreductase family. Here, we investigated the reactivity, the structure and kinetics of NfrA1, which could provide insight into the unclear biological role of this enzyme. We could show that NfrA1 possesses an NADH oxidase activity that leads to high concentrations of oxygen peroxide and an NAD+ degrading activity leading to free nicotinamide. Finally, we showed that NfrA1 is able to rapidly scavenge H2O2 produced during the oxidative process or added exogenously.

Structured summary

MINT-7990140: nfrA1 (uniprotkb:P39605) and nfrA1 (uniprotkb:P39605) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

15.
Copper, zinc-superoxide dismutase (CuZn-SOD) is a cytosolic, antioxidant enzyme that scavenges potentially damaging superoxide radical (()O(2)(-)). Under the proper conditions, CuZn-SOD also catalyzes the oxidation and reduction of certain small molecules. Here, we demonstrate that increased exposure to hydrogen peroxide (H(2)O(2)), a by-product of the ()O(2)(-) scavenging reaction, dramatically increases the ability of CuZn-SOD to oxidize melatonin and reduce S-nitrosoglutathione (GSNO). After a 15min in vitro incubation with CuZn-SOD and 1mM H(2)O(2), 76% of the melatonin was oxidized, compared to 52% with 0.25mM H(2)O(2), and just 9% without H(2)O(2). Pre-incubation with 1mM H(2)O(2) resulted in a 100% increase in the rate of GSNO breakdown by CuZn-SOD in the presence of glutathione (GSH) compared to untreated CuZn-SOD. Collectively, these data suggest that even small increases in intracellular H(2)O(2) levels may result in the oxidation and/or reduction of small molecules critical for proper cellular function.  相似文献   

16.
Here, we report the identification and characterization of five ortho-quinone inhibitors of PTPalpha. We observed that the potency of these compounds in biochemical assays was markedly enhanced by the presence of DTT. A kinetic analysis suggested that they were functioning as irreversible inhibitors and that the inhibition was targeted to the catalytic site of PTPalpha. The inhibition observed by these compounds was sensitive to superoxide dismutase and catalase, suggesting that reactive oxygen species may be mediators of their inhibition. We observed that in the presence of DTT, these compounds would produce up to 2.5mM hydrogen peroxide (H(2)O(2)). The levels of H(2)O(2) produced were sufficient to completely inactivate PTPalpha. In contrast, without a reducing agent the compounds did not generate H(2)O(2) and showed little activity towards PTPalpha. In addition, these compounds inhibited PTPalpha-dependent cell spreading in NIH 3T3 cells at concentrations that were similar to their activity in biochemical assays. The biological implications of these results are discussed as they support growing evidence that H(2)O(2) is a key regulator of PTPs.  相似文献   

17.
Rice leaves produce H2O2 in response to abscisic acid (ABA), which results in induction of senescence and accumulation of NH4+. The upstream steps of the ABA-induced H2O2 production pathway in rice leaves remain largely unclear. In animal cells, H2O2 production in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-knase (PI3K). In the present study, we examined whether PI3P plays a role in H2O2 production in rice leaves exposed to ABA. We found that PI3K inhibitors LY 294002 (LY) or wortmannin (WM) inhibited ABA-induced H2O2 production, senescence and NH4+ accumulation. Hydrogen peroxide almost completely rescued the inhibitory effect of LY or WM. It appears that PI3P plays a role in ABA-induced H2O2 production, senescence, and NH4+ accumulation in rice leaves.  相似文献   

18.
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (PM, F and F) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F but when F is generated with hydrogen peroxide, is always accompanied by the narrow radical. When PM is produced at high pH with CO/O2, no EPR-detectable radicals are formed. Conversion of the CO/O2-generated PM into F when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F determined optically. It is concluded that low pH causes a change of protonation pattern in PM which induces partial electron redistribution and tryptophan cation radical formation in F. These protonation changes may mimic a key step of the proton translocation process.  相似文献   

19.
Optical tweezers are employed to study the action of the histone-like protein from Thermotoga maritima (TmHU) on DNA at a single molecule level. Binding and disruption of TmHU to and from DNA are found to take place in discrete steps of 4-5 nm length and a net binding enthalpy of about 16kBT. This is in reasonable agreement with a microscopic model that estimates the extension of the binding sites of the protein and evaluates the energetics mainly for bending of the DNA in the course of interaction.  相似文献   

20.
Horseradish peroxidase: a modern view of a classic enzyme   总被引:18,自引:0,他引:18  
Veitch NC 《Phytochemistry》2004,65(3):249-259
Horseradish peroxidase is an important heme-containing enzyme that has been studied for more than a century. In recent years new information has become available on the three-dimensional structure of the enzyme and its catalytic intermediates, mechanisms of catalysis and the function of specific amino acid residues. Site-directed mutagenesis and directed evolution techniques are now used routinely to investigate the structure and function of horseradish peroxidase and offer the opportunity to develop engineered enzymes for practical applications in natural product and fine chemicals synthesis, medical diagnostics and bioremediation. A combination of horseradish peroxidase and indole-3-acetic acid or its derivatives is currently being evaluated as an agent for use in targeted cancer therapies. Physiological roles traditionally associated with the enzyme that include indole-3-acetic acid metabolism, cross-linking of biological polymers and lignification are becoming better understood at the molecular level, but the involvement of specific horseradish peroxidase isoenzymes in these processes is not yet clearly defined. Progress in this area should result from the identification of the entire peroxidase gene family of Arabidopsis thaliana, which has now been completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号