首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The dopamine (DA)-containing nerve terminals in the caudate nucleus arise from cell bodies located in the substantia nigra (pars compacta), and it is possible that p-tyramine- and m-tyramine-containing neurons may also exist in this nucleus. We have studied the effects of unilateral electrolytic lesions of the pars compacta in rat on levels of DA, p-tyramine, m-tyramine, and homovanillic acid in the caudate nucleus after various survival times. At 12 and 24 h following lesioning the ipsilateral level of p-tyramine was significantly reduced compared with the contralateral side, whereas the concentrations of m-tyramine, DA, and homovanillic acid were significantly increased. Thus, in the short term, the lesion results in an increase in DA turnover, which is accompanied by an increase in m-tyramine levels and a decrease in p-tyramine levels. Similar changes occur following pharmacological treatments (chlorpromazine, d-amphetamine, l-DOPA) that increase DA turnover. At survival times of 2, 11, and 25 days, the ipsilateral concentrations of m-tyramine, DA, and homovanillic acid were reduced along with p-tyramine. These longer-term alterations in amine levels are most likely a consequence of degeneration of nigro-striatal axons. Placement of a lesion 1 mm dorsal to the usual position centering on the pars compacta produced different biochemical changes from those seen after the pars compacta lesion. One day following this lesion the concentration of p-tyramine was slightly reduced; DA was unaffected, but the concentration of m-tyramine was profoundly increased, even more so than after the pars compacta lesion. This could indicate the existence of specific m-tyramine-containing cell bodies located dorsal to the substantia nigra. The results suggest that p- and m-tyramine in the caudate nucleus originate from neurons in or close to the substantia nigra. The results in the short term following the lesion support the observation that there is an inverse relationship between p-tyramine concentration and DA turnover in the caudate nucleus.  相似文献   

2.
Abstract: The effects of substrates m -tyramine and β-phenethylamine, as well as cocaine, on the DA efflux from a cell line stably expressing the human norepinephrine transporter (hNET) were investigated by using rotating disk electrode voltammetry. Both the substrates and cocaine induced apparent DA efflux in a concentration-dependent manner. Their EC50 values for inducing DA efflux were similar to their IC50 values for inhibiting DA uptake. The substrate-induced DA efflux was inhibited by various NET blockers, enhanced by raising the internal [Na+] with Na+,K+-ATPase inhibition, but was insensitive to membrane potential-altering agents valinomycin, veratridine, and high [K+]. The initial rate of m -tyramine-induced DA efflux was related to preloaded [DA] in a manner defined by a Michaelis-Menten expression. In contrast, DA efflux in the presence of cocaine displayed a much slower efflux rate, lower efficacy, was not stimulated by elevated internal [Na+], and was nonsaturable with preloaded [DA]. Single exponential kinetic analysis of the entire time course of the DA efflux showed that the apparent first-order rate constant for m -tyramine-induced DA efflux declined with increased preloaded [DA], whereas that for the DA efflux in the presence of cocaine was unchanged with varying preloaded [DA]. These results suggest that the substrates stimulate the NET-dependent DA efflux by increasing the accessibility of the NET to internal DA, whereas cocaine "uncovers" NET-independent DA efflux by reducing the accessibility of diffused/leaked external DA to the NET.  相似文献   

3.
Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria.  相似文献   

4.
The human dopamine transporter was expressed in Xenopus laevis oocytes following injection of mRNA isolated from human brain substantia nigra. The specific accumulation of [3H]dopamine into these oocytes was time and Na+ dependent. Furthermore, [3H]dopamine accumulation was prevented by coincubation of oocytes with dopamine (100 microM) or with the dopamine uptake inhibitors GBR 12909 (1 microM) or cocaine (3 microM). In contrast, oocyte injection of mRNA isolated from human globus pallidus, an area devoid of dopamine neuron perikarya, did not elicit expression of the dopamine transporter. Oocyte expression of the human dopamine transporter can be used for the further characterization and cloning of this low-abundance membrane protein.  相似文献   

5.
Methylphenidate (MPD) was found to inhibit competitively the striatal dopamine transporter (DAT) and bind at sites on the DAT in common with both cocaine (a non-substrate site ligand) and amphetamine (a substrate site ligand). Some methylphenidate analogues modified on the aromatic ring and/or at the nitrogen were tested to determine whether the profile of inhibition could be altered. None was found to stimulate the release of dopamine in the time frame (< or = 60 s) of the experiments conducted, and each of the analogues tested was found to noncompetitively inhibit the transport of dopamine. It was found that halogenating the aromatic ring with chlorine (threo-3,4-dichloromethylphenidate hydrochloride; compound 1) increased the affinity of MPD to inhibit the transport of dopamine. A derivative of MPD with simultaneous, single methyl group substitutions on the phenyl ring and at the nitrogen (threo-N-methyl-4-methylphenidate hydrochloride; compound 2) bound at a site in common with MPD. A benzyl group positioned at the nitrogen (threo-N-benzylmethylphenidate hydrochloride; compound 3) imparted properties to the inhibitor in which binding at substrate and non-substrate sites could be distinguished. This analogue bound at a mutually interacting site with that of methylphenidate and had a K(int) value of 4.29 microM. Furthermore, the N-substituted analogues (compounds 2 and 3), although clearly inhibitors of dopamine transport, were found to attenuate dramatically the inhibition of dopamine transport by amphetamine, suggesting that the development of an antagonist for substrate analogue drugs of abuse may be possible.  相似文献   

6.
Abstract: The contribution of N-linked carbohydrates to the function of the human norepinephrine transporter (NET) was investigated using site-directed mutagenesis to inactivate the two most carboxy-terminal (NQQ mutant) or all three (QQQ mutant) sites for N -glycosylation within the extracellular loop between transmembrane domains 3 and 4. In HeLa cells transiently expressing the NET, two glycosylated forms of the transporter at 90 and 60 kDa are immunoprecipitated by NET antisera. A single 50-kDa species is observed in cells expressing the QQQ mutant, and it likely represents the NET core protein. Analyses of substrate transport kinetics showed rank order V max of 19:9:1 for NET/NQQ/QQQ without a change in the apparent affinity of the wild-type and mutated carriers for either substrates or transport inhibitors. Cell surface biotinylation indicates that all NET, NQQ, and QQQ transporter species are detected at the plasma membrane but that glycosylated forms are selectively enriched. The transport activities exhibited by each of the carriers correlate well with cell surface content. Subcellular localization of transporters using immunofluorescence microscopy shows that reductions in surface expression and transport are associated with a corresponding increase in the intracellular retention of mutated carriers. Thus, N-linked glycosylation does not alter the apparent affinity of NET for either substrates or inhibitors of transport but, instead, appears to influence the abundance of carriers at the cell surface.  相似文献   

7.
The effects of bromoacetylaminomenthylnorepinephrine (BAAN) on the sodium-dependent, high-affinity norepinephrine (NE) uptake system in rat brain synaptosomes and CNS neuronal cultures were investigated. BAAN inhibited [3H]NE uptake into synaptosomes in a dose- and time-dependent manner (IC50, 6.5 microM). Pretreatment of cortical synaptosomes or neuronal cells with BAAN alone, followed by washing to remove free drug, reduced the Vmax but did not alter the Km value for [3H]NE uptake. The BAAN-induced reduction in Vmax was attenuated by concurrent pretreatment with desipramine and blocked by the reaction of BAAN with dithiothreitol or cysteine. In contrast, BAAN was 19-fold less potent at inhibiting [3H]dopamine uptake in striatal synaptosomes, and no change in the Vmax or Km value for [3H]dopamine uptake was observed after a pretreatment with BAAN followed by washing. Furthermore, the irreversible beta-antagonist, bromoacetylalprenololmentane, was equipotent to BAAN for inhibiting [3H]NE uptake into cortical synaptosomes, but did not alter the Vmax or Km for [3H]NE after pretreatment. In neuronal cultures, BAAN inhibited sodium-dependent uptake of [3H]NE (IC50, 5.6 microM) with no effect on sodium-independent uptake. After pretreatment of cultures with 30 microM BAAN followed by washing, there was a 74% decrease in the Vmax for [3H]NE uptake. Following a 24-h lag period, uptake recovered to the control level within 48 h; however, recovery was completely blocked by cycloheximide. The data indicate that BAAN irreversibly binds to the [3H]NE uptake system in both CNS synaptosomes and neuronal cultures and may be a useful probe for studying the turnover of the [3H]NE uptake system.  相似文献   

8.
Abstract: Experiments were conducted to determine how (−)-cocaine and S (+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m -tyramine and S (+)-amphetamine caused release of dopamine from intracellular stores at concentrations ≥12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m -tyramine and S (+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S (+)-Amphetamine and m -tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (−)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site ( K int = 583 n M ). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (−)-cocaine suggest that the (−)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (−)-cocaine binding may be developed to block (−)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.  相似文献   

9.
Amphetamine (AMPH) and its derivatives are regularly used in the treatment of a wide array of disorders such as attention-deficit hyperactivity disorder (ADHD), obesity, traumatic brain injury, and narcolepsy (Prog Neurobiol 75:406–433, 2005; J Am Med Assoc 105:2051–2054, 1935; J Am Acad Child Adolesc Psychiatry 41:514–521, 2002; Neuron 43:261–269, 2004; Annu Rev Pharmacol Toxicol 47:681–698, 2007; Drugs Aging 21:67–79, 2004). Despite the important medicinal role for AMPH, it is more widely known for its psychostimulant and addictive properties as a drug of abuse. The primary molecular targets of AMPH are both the vesicular monoamine transporters (VMATs) and plasma membrane monoamine—dopamine (DA), norepinephrine (NE), and serotonin (5-HT)—transporters. The rewarding and addicting properties of AMPH rely on its ability to act as a substrate for these transporters and ultimately increase extracellular levels of monoamines. AMPH achieves this elevation in extracellular levels of neurotransmitter by inducing synaptic vesicle depletion, which increases intracellular monoamine levels, and also by promoting reverse transport (efflux) through plasma membrane monoamine transporters (J Biol Chem 237:2311–2317, 1962; Med Exp Int J Exp Med 6:47–53, 1962; Neuron 19:1271–1283, 1997; J Physiol 144:314–336, 1958; J Neurosci 18:1979–1986, 1998; Science 237:1219–1223, 1987; J Neurosc 15:4102–4108, 1995). This review will focus on two important aspects of AMPH-induced regulation of the plasma membrane monoamine transporters—transporter mediated monoamine efflux and transporter trafficking.  相似文献   

10.
11.
Hgt1p, a member of the oligopeptide transporter family, is a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. We have explored the role of polar or charged residues in the putative transmembrane domains of Hgt1p to obtain insights into the structural features of Hgt1p that govern its substrate specificity. A total of 22 charged and polar residues in the predicted transmembrane domains and other conserved regions were subjected to alanine mutagenesis. Functional characterization of these 22 mutants identified 11 mutants which exhibited significant loss in functional activity. All 11 mutants except T114A had protein expression levels comparable with wild type, and all except E744A were proficient in trafficking to the cell surface. Kinetic analyses revealed differential contributions toward the functional activity of Hgt1p by these residues and identified Asn-124 in transmembrane domain 1 (TMD1), Gln-222 in TMD4, Gln-526 in TMD9, and Glu-544, Arg-554, and Lys-562 in the intracellular loop region 537–568 containing the highly conserved proline-rich motif to be essential for the transport activity of the protein. Furthermore, mutants Q222A and Q526A exhibited a nearly 4- and 8-fold increase in the Km for glutathione. Interestingly, although Gln-222 is widely conserved among other functionally characterized oligopeptide transporter family members including those having a different substrate specificity, Gln-526 is present only in Hgt1p and Pgt1, the only two known high affinity glutathione transporters. These results provide the first insights into the substrate recognition residues of a high affinity glutathione transporter and on residues/helices involved in substrate translocation in the structurally uncharacterized oligopeptide transporter family.Hgt1p or ScOpt1p, a polytopic membrane protein, from the yeast Saccharomyces cerevisiae, was the first high affinity glutathione transporter to be identified in any system (1). Hgt1p belongs to a relatively novel family of transporters, the oligopeptide transporter (OPT)3 family, that contains a large number of fungal, plant, and prokaryotic members (2). The functional characterizations of a few of the fungal and plants members have demonstrated their ability to transport oligopeptides, glutathione, and metal-secondary amino acid conjugates by harnessing the proton gradient across the plasma membrane (37). Furthermore, these studies have also highlighted the physiological significance of this family in assimilation/mobilization of oligopeptides as nutrients in fungi and plants and in maintenance of metal homeostasis in plants. However, the majority of the members are yet uncharacterized and need to be defined with respect to their substrate specificity and physiological role.A complete lack of information on the structural features of the OPT family further limits our understanding of this large, uncharacterized family. Identification of residues or motifs critical for substrate recognition among the functionally characterized members would enable functional characterization of the new members within the family. This has prompted us to initiate a systematic study on the structure-function characterization of Hgt1p as a representative of the OPT family. Not only is Hgt1p the best characterized member of the OPT family in terms of its substrate specificity, being also able to transport some oligopeptides albeit with low affinity (1, 7, 8), its native host S. cerevisiae is a well established model system and easily amendable for mutagenesis-based structure-function studies. We have recently investigated the role of the 12 native cysteine residues in the structural stability and the transporter activity of the protein where 2 of the cysteines were found to be essential for functionality (9). However, no hints on the important motifs or conserved amino acids of Hgt1p (or any other member of the OPT family) that could be involved in substrate recognition have been obtained so far. In the current study we have focused on the polar and charged residues in the transmembrane domains of Hgt1p to explore their role in substrate recognition.Glutathione, the substrate for Hgt1p, is a hydrophilic substrate. Prior studies on structural characterization of transporters of the other hydrophilic substrates using biochemical and genetic strategies, such as site-directed mutagenesis and random mutagenesis, have established the role of polar and charged residues in the transmembrane domains of transporters in recognition, binding, and translocation of substrates (1018). The availability of the crystal structures of a few transporter proteins have further enabled direct visualization of such interactions between the key residues in the transmembrane domains and the substrate molecule (1922). In light of these studies we anticipated that few of the charged or polar residues in the predicted transmembrane domains of Hgt1p would be involved in substrate recognition and translocation across the membrane. Hence, a total of 22 polar or charged amino acids spanning the predicted transmembrane domains of Hgt1p were subjected to alanine scanning and functionally characterized. Detailed biochemical characterizations of these mutants revealed that Asn-124, Gln-222, Gln-526, Glu-544, Arg-554, and Lys-562 are key residues for the transport activity of Hgt1p. As replacement of Gln-222 in TMD4 and Gln-526 in TMD9 with alanine resulted in a significant decrease in the affinity of the transporter for glutathione, it suggested that the two residues might directly participate in glutathione recognition as a substrate. These observations provide the first insights into substrate binding residues in Hgt1p, a member of a novel and important transporter family (OPT family).  相似文献   

12.
Human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is responsible for intestinal reabsorption of bile acids and plays a key role in cholesterol homeostasis. We used a targeted and systematic approach to delineate the role of highly conserved transmembrane helix 2 on the expression and function of hASBT. Cysteine mutation significantly depressed transport activity for >60% of mutants without affecting cell surface localization of the transporter. All mutants were inaccessible toward chemical modification by membrane-impermeant MTSET reagent, strongly suggesting that transmembrane 2 (TM2) plays an indirect role in bile acid substrate translocation. Both bile acid uptake and sodium dependence of TM2 mutants revealed a distinct α-helical periodicity. Kinetic studies with conservative and non-conservative mutants of sodium sensitive residues further underscored the importance of Gln75, Phe76, Met79, Gly83, Leu86, Phe90, and Asp91 in hASBT function. Computational analysis indicated that Asp91 may coordinate with sodium during the transport cycle. Combined, our data propose that a consortium of sodium-sensitive residues along with previously reported residues (Thr134, Leu138, and Thr149) from TM3 may form the sodium binding and translocation pathway. Notably, residues Gln75, Met79, Thr82, and Leu86 from TM2 are highly conserved in TM3 of a putative remote bacterial homologue (ASBTNM), suggesting a universal mechanism for the SLC10A transporter family.  相似文献   

13.
Tricyclic antidepressants (TCAs) have been used for decades, but their orientation within and molecular interactions with their primary target is yet unsettled. The recent finding of a TCA binding site in the extracellular vestibule of the bacterial leucine transporter 11 Å above the central site has prompted debate about whether this vestibular site in the bacterial transporter is applicable to binding of antidepressants to their relevant physiological target, the human serotonin transporter (hSERT). We present an experimentally validated structural model of imipramine and analogous TCAs in the central substrate binding site of hSERT. Two possible binding modes were observed from induced fit docking calculations. We experimentally validated a single binding mode by combining mutagenesis of hSERT with uptake inhibition studies of different TCA analogs according to the paired mutation ligand analog complementation paradigm. Using this experimental method, we identify a salt bridge between the tertiary aliphatic amine and Asp98. Furthermore, the 7-position of the imipramine ring is found vicinal to Phe335, and the pocket lined by Ala173 and Thr439 is utilized by 3-substituents. These protein-ligand contact points unambiguously orient the TCA within the central binding site and reveal differences between substrate binding and inhibitor binding, giving important clues to the inhibition mechanism. Consonant with the well established competitive inhibition of uptake by TCAs, the resulting binding site for TCAs in hSERT is fully overlapping with the serotonin binding site in hSERT and dissimilar to the low affinity noncompetitive TCA site reported in the leucine transporter (LeuT).  相似文献   

14.
The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT.  相似文献   

15.
The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [3H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2–3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding.  相似文献   

16.
The composition of the plasma membrane domains of epithelial cells is maintained by biosynthetic pathways that can sort both proteins and lipids into transport vesicles destined for either the apical or basolateral surface. In MDCK cells, the influenza virus hemagglutinin is sorted in the trans-Golgi network into detergent-insoluble, glycosphingolipid-enriched membrane domains that are proposed to be necessary for sorting hemagglutinin to the apical cell surface. Site- directed mutagenesis of the hemagglutinin transmembrane domain was used to test this proposal. The region of the transmembrane domain required for apical transport included the residues most conserved among hemagglutinin subtypes. Several mutants were found to enter detergent-insoluble membranes but were not properly sorted. Replacement of transmembrane residues 520 and 521 with alanines converted the 2A520 mutant hemagglutinin into a basolateral protein. Depleting cell cholesterol reduced the ability of wild-type hemagglutinin to partition into detergent-insoluble membranes but had no effect on apical or basolateral sorting. In contrast, cholesterol depletion allowed random transport of the 2A520 mutant. The mutant appeared to lack sorting information but was prevented from reaching the apical surface when detergent-insoluble membranes were present. Apical sorting of hemagglutinin may require binding of either protein or lipids at the middle of the transmembrane domain and this normally occurs in detergent-insoluble membrane domains. Entry into these domains appears necessary, but not sufficient, for apical sorting.  相似文献   

17.
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same α-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC50 similar to the apparent KM of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.  相似文献   

18.
The human intestinal di-/tripeptide transporter (hPEPT1) is a 12-transmembrane protein that facilitates transport of peptides from the intestine into the circulation. hPEPT1 is also an important target in oral delivery of drugs, but mechanistic and structural data for the protein are limited. In particular, there is little information on the function of the loops of the transporter. In this study, we show that mutation of several charged residues in the largest intracellular loop of hPEPT1 (loop 6-7, amino acids 224-278) significantly reduces hPEPT1 function. This loop has an asymmetric distribution of charged residues, with only positive charges in the N-terminal half and all five negative charges in the loop located in a small part of the C-terminal half. Point mutagenesis to alanine of three positive residues in the N-terminal half of loop 6-7 and four negative residues in the C-terminal half of the loop significantly reduced glycylsarcosine uptake. E267 was particularly sensitive to mutation, and kinetic analyses of E267A- and E267K-hPEPT1 gave V (max) values 10-fold lower than that for the wild-type protein. Secondary structure prediction suggested that loop 6-7 includes two amphipathic α-helices, with net positive and negative charges, respectively. We interpret the mutagenesis data in terms of interactions of the charged residues in loop 6-7 that may influence conformational changes of hPEPT1 during and after substrate transport.  相似文献   

19.
Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.  相似文献   

20.
In Gram-negative bacteria, TonB-dependent outer-membrane transporters bind large, scarce organometallic substrates with high affinity preceding active transport. The cobalamin transporter BtuB requires the additional binding of two Ca2+ ions before substrate binding can occur, but the underlying molecular mechanism is unknown. Using the crystallographic structures available for different bound states of BtuB, we have carried out extended molecular dynamics simulations of multiple functional states of BtuB to address the role of Ca2+ in substrate recruitment. We find that Ca2+ binding both stabilizes and repositions key extracellular loops of BtuB, optimizing interactions with the substrate. Interestingly, replacement by Mg2+ abolishes this effect, in accordance with experiments. Using a set of new force-field parameters developed for cyanocobalamin, we also simulated the substrate-bound form of BtuB, where we observed interactions not seen in the crystal structure between the substrate and loops previously found to be important for binding and transport. Based on our results, we suggest that the large size of cobalamin compared to other TonB-dependent transporter substrates explains the requirement of Ca2+ binding for high-affinity substrate recruitment in BtuB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号