首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the morphological peculiarities of Mauthner neurons, MNs, in goldfishes with a phenotypically different or an experimentally modified preference to perform rightward vs leftward turnings in the course of motor behavior; this preference was characterized by values of the motor asymmetry coefficient (MAC). 3D reconstruction of MNs was performed based on several histological sections; volumes of the soma, lateral and ventral dendrites (LD and VD, respectively), initial segment of the axon, as well as full volumes of the right and left neurons, were calculated. Differences between the above parameters were expressed as structural asymmetry coefficients (SACs). It was shown that clear orientation asymmetry of motor behavior of the fish is accompanied by differences in the dimensions of MNs and their compartments; MNs localized contralaterally with respect to the preferred turning side were considerably bigger than ipsilateral neurons. Experimental influences inducing inversion of the motor asymmetry of fishes inverted structural asymmetry of their MNs. In fishes with no phenotypical preference of the turning side and in individuals whose motor asymmetry was smoothed due to experimental influences (rotational stimulations), structural asymmetry of the MNs was also smoothed. Changes of the structural proportions developed, as a rule, due to decreases in the dimensions of one or both MNs and their compartments. The MAC value was in direct correlation with the value of SAC of the MNs and with values of this coefficient for the soma and the sum soma + LD. At the same time, reciprocal relations were found for the MAC and structural asymmetry of the VD; the decrease in the volume of VD was related to an increase in the preference of the contralateral turning side by the fish, and vice versa. In general, the results of our study demonstrate that both morphological and functional peculiarities of MNs correlate to a significant extent with such a form of motor behavior of fishes as realization of spontaneous turnings. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 18–31, January–February, 2006.  相似文献   

2.
We studied the effects of unilateral enucleation of the eye on the motor asymmetry of goldfish fries and morphometric characteristics of their Mauthner neurons, MNs (data of 3D reconstruction using serial slices). Enucleation of the right or left eye in ambidextral fishes resulted in stable preference of turnings during swimming toward the side of visual deafferentation and in a shift of the initial motor asymmetry coefficient (MAC) by 25%, on average. Ipsilateral enucleation of the eye in dextral and sinistral fishes intensified the initial motor asymmetry by 20%. Contralateral enucleation of the eye in dextral and sinistral fishes induced inversion of the motor asymmetry with a decrease in the MAC by 50%, on average. All operated fishes stably (within 3 months or more) preferred to turn toward the side of the enucleated eye. Morphological measurements showed that the size of the ventral dendrite of the MN contralateral with respect to the side of enucleation noticeably decreased. At the same time, this neuron (according to a shift in the motor asymmetry of the fish) became the functionally dominant unit. These data agree with the earlier supposition on a reciprocal relation between the level of functional activity of the MN and the size of its ventral dendrite. Selective changes in the dimension of the ventral dendrite of the MN receiving visual inputs probably resulted from the action of some endogenous trophic factor. The effect of this factor was enhanced after enucleation of the eye and the corresponding dysfunction of the contralateral visual input. A specific local change in the balance of neurotransmitter influences upon the MN ventral dendrite can play the role of such a factor. From the neurophysiological aspect, a decrease in the size of the ventral MN dendrite is a primary link in the chain of events resulting in modification of behavior; it leads to intensification of the integral functional activity of the MN and a shift of the motor asymmetry of the fish compensating, in such a way, the effect of unilateral visual deprivation.  相似文献   

3.
We studied swimming of goldfish fries about 3 cm long in a narrow channel by calculating the numbers of spontaneous turns on different sides. The ratio of fishes preferring to turn to the right vs to the left was 1.5:1.0, respectively; two-thirds of the fishes demonstrated an ambilateral behavior. Experiments with compulsory 10-min-long rotation of the fishes (clockwise around the longitudinal body axis for fishes preferring right-side turns and anticlockwise for fishes preferring left-side turns) showed that the behavioral asymmetry smoothed somewhat after such a procedure, and a greater number of the fishes became ambilateral in their preference to turn to one side or another. After a one- or two-day-long test, the initial asymmetry of motor behavior completely recovered. Compulsory rotation of similar fishes in the opposite direction exerted no influence on the asymmetry in the choice of the turning direction. Adaptation-induced training of the fishes (using fatiguing long-lasting vestibular stimulation) resulted in some smoothing of motor asymmetry but did not change its general pattern. Thus, our findings allow us to believe that a noticeable proportion of the goldfish individuals (similarly to other animals and humans) is characterized by an innate asymmetry of the motor function with a clear preference for either right- or left-side turnings. These relations can be smoothed under experimental influences but are recovered later on, i.e., they are stable and are not fundamentally transformed. We assume that the asymmetry of motor behavior of fishes in a narrow channel can be an adequate pre-requisite for further examination of the asymmetry of the brain and motor centers controlling changes in locomotion (body turnings)Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 52–60, January–February, 2005.  相似文献   

4.
Adaptation as a memory model appears, at the cellular level, as an increase in the resistivity of neurons to fatigue under the influence of repetitive natural training stimulation. Selective induction of adaptational changes in separate compartments of one and the same neuron can also serve as an important instrument for identification of the roles of these compartments in the integrative function of the individual neuron. Mauthner neurons (MNs) of fishes (the goldfish in particular) possess a clearly differentiated soma and two dendrites, lateral and ventral ones. The soma and lateral dendrite of each MN receive afferentation from the ipsilateral vestibular apparatus; at present, the functional and morphological aspects of selective adaptational modifications induced in these compartments by adequate vestibular stimulation have been examined in detail. As to the ventral MN dendrite receiving visual afferentation from the contralateral eye via the ipsilateral tectum, it remained impossible until now to realize the respective approach. We found that training sessions of visual optokinetic stimulation performed in certain modes provide selective activation of one MN through its ventral dendrite and increase the resistivity of this cell to fatiguing stimulation. Therefore, we first demonstrated the possibility of adaptational changes in an individual ventral dendrite of the MN. If fishes were preliminarily adapted with respect to vestibular stimulation, and the resistivity of the soma and lateral dendrite was selectively increased, the resistivity to fatiguing visual test stimulation also increased. On the other hand, if fishes were preliminarily adapted with respect to visual stimulation, the resistivity to fatiguing vestibular stimulation also increased. The observed increase in the resistivity of MNs of fishes adapted due to sensory stimulation of one afferent input with respect to sensory stimulation of other sensory input, as well as an increase in the resistivity to sensory stimulation of one modality, probably show that the mechanism of increase in the resistivity is the same in both cases. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 211–220, May–June, 2008.  相似文献   

5.
We studied changes in the motor asymmetry of the goldfish induced by single-session long-lasting vestibular stimulations (clockwise and counter clockwise rotations around the rostro-caudal body axis) and repetitive everyday short sessions of such stimulation (training); the latter mode led to the development of adaptation (resistance to fatigue). Rotational stimulation of different durations and directions elicited effects of different patterns and intensities. Such stimulation enhanced or, vice versa, smoothed the motor asymmetry in “dextral” and “ sinistral” fishes, up to full symmetry or even a change of the preferred turning direction. Adaptation to unilateral rotational stimulation allows an experimenter to selectively and gradually induce the resistivity of the left-or right-ward asymmetry to fatigue effects. Earlier, we found that the motor asymmetry in the goldfish, which is determined by the functional asymmetry of the brain, correlates with the morphological asymmetry of Mauthner neurons localized in the medulla in a mirror manner and playing a crucial role in the control of turnings in the course of locomotion (swimming). Experimental rotational stimulation-induced gradual modification of the motor asymmetry in the goldfish can serve as a physiological model for more detailed studies of the structural base of the functional brain asymmetry and some mechanisms of adaptation on the level of single neurons. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 432–442, September–December, 2005.  相似文献   

6.
To assess the organization and functional development of vestibulospinal inputs to cervical motoneurons (MNs), we have used electrophysiology (ventral root and electromyographic [EMG] recording), calcium imaging, trans‐synaptic rabies virus (RV) and conventional retrograde tracing and immunohistochemistry in the neonatal mouse. By stimulating the VIIIth nerve electrically while recording synaptically mediated calcium responses in MNs, we characterized the inputs from the three vestibulospinal tracts, the separate ipsilateral and contralateral medial vestibulospinal tracts (iMVST/cMVST) and the lateral vestibulospinal tract (LVST), to MNs in the medial and lateral motor columns (MMC and LMC) of cervical segments. We found that ipsilateral inputs from the iMVST and LVST were differentially distributed to the MMC and LMC in the different segments, and that all contralateral inputs to MMC and LMC MNs in each segment derive from the cMVST. Using trans‐synaptic RV retrograde tracing as well as pharmacological manipulation of VIIIth nerve‐elicited synaptic responses, we found that a substantial proportion of inputs to both neck and forelimb extensor MNs was mediated monosynaptically, but that polysynaptic inputs were also significant. By recording EMG responses evoked by natural stimulation of the vestibular apparatus, we found that vestibular‐mediated motor output to the neck and forelimb musculature became more robust during the first 10 postnatal days, concurrently with a decrease in the latency of MN discharge evoked by VIIIth nerve electrical stimulation. Together, these results provide insight into the complexity of vestibulospinal connectivity in the cervical spinal cord and a cogent demonstration of the functional maturation that vestibulospinal connections undergo postnatally. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1061–1077, 2016  相似文献   

7.
The mechanisms of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS) are unknown, but glutamate-mediated excitotoxicity may be involved. To examine directly this idea in vivo, we have used microdialysis in the rat lumbar spinal cord and showed that four- to fivefold increases in the concentration of endogenous extracellular glutamate during at least 1 h, by perfusion with the glutamate transport inhibitor L-2,4-trans-pyrrolidine-dicarboxylate, elicited no motor alterations or MN damage. Stimulation of glutamate release with 4-aminopyridine induced transitory ipsilateral hindlimb muscular twitches but no MN damage. In contrast, perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) did not modify glutamate levels but produced intense muscular spasms, followed by ipsilateral permanent hindlimb paralysis and a remarkable loss of MNs. These effects of AMPA were prevented by co-perfusion with the AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Perfusion with NMDA or kainate produced no motor effects or MN damage. Thus, the elevation of endogenous extracellular glutamate in vivo due to blockade of its transport is innocuous for spinal MNs. Because this resistance is observed under the same experimental conditions in which MNs are highly vulnerable to AMPA, these results indicate that excitotoxicity due to this mechanism might not be an important factor in the pathogenesis of ALS.  相似文献   

8.
离体运动神经元对腹外侧索刺激的突触反应特征   总被引:6,自引:0,他引:6  
汪萌芽  沈锷 《生理学报》1997,49(6):625-631
应用新片大鼠脊髓薄片运动神经元细胞内记录技术,对电刺激腹外侧索诱发的突触反应进行了电生理特性分析。结果在28个测试的MN中,22人有兴奋性突触后电位反应,其中2个跟随在抑制性突触反应这后,6个还对单或串刺激产生慢EPSP反应;VLF-EPSP的潜伏期频数分布呈峰坡性偏态;同-MN的VLF-EPSP与腹根EPSP间有典型的空间总和。  相似文献   

9.
Global visual motion elicits an optomotor response of the eye that stabilizes the visual input on the retina. Here, we analyzed the neck motor system of the blowfly to understand binocular integration of visual motion information underlying a head optomotor response. We identified and characterized two cervical nerve motor neurons (called CNMN6 and CNMN7) tuned precisely to an optic flow corresponding to pitch movements of the head. By means of double recordings and dye coupling, we determined that these neurons are connected ipsilaterally to two vertical system cells (VS2 and VS3), and contralaterally to one horizontal system cell (HSS). In addition, CNMN7 turned out to be connected to the ipsilateral CNMN6 and to its contralateral counterpart. To analyze a potential function of this circuit, we performed behavioral experiments and found that the optomotor pitch response of the fly head was only observable when both eyes were intact. Thus, this neural circuit performs two visuomotor transformations: first, by integrating binocular visual information it enhances the tuning to the optic flow resulting from pitch movements of the head, and second it could assure an even head declination by coordinating the activity of the CNMN7 neurons on both sides.  相似文献   

10.
In the tobacco hornworm caterpillar, tactile stimulation of sensory hairs located on the tip of a proleg (the planta) evokes ipsilateral or bilateral retraction of the prolegs in that segment. We have used electrophysiological and anatomical methods to investigate the excitatory neural pathways linking the planta hair afferents and the proleg retractor motoneurons (MNs). An important technical innovation was the development of an isolated proleg and desheathed ganglion preparation that permits rapid and reversible ionic manipulations and drug applications. Action potentials (spikes) in individual planta hair afferents produce time-locked excitatory postsynaptic potentials (EPSPs) in ipsilateral proleg MNs which appear to be chemically-mediated and monosynaptic: the EPSPs have a short and constant latency, they follow afferent spikes without failure, they are reversibly abolished in elevated Mg++ saline, and they persist in saline with elevated Mg++ and Ca++ levels. Planta hair afferents also excite ipsilateral MNs by polysynaptic pathways, and their excitation of contralateral proleg MNs is exclusively polysynaptic. Cobalt-staining of the proleg MNs and planta hair afferents shows that the afferents terminate in ventral neuropil, and the proleg MNs have an unusual ventral projection into this region. The ventral projection is on the ipsilateral side, which is consistent with the electrophysiological finding that time-locked EPSPs are found only from ipsilateral hairs. Two factors that contribute to the strong monosynaptic excitation of proleg MNs by ipsilateral planta hairs are the convergence of many hair afferents onto each MN, and the facilitation shown at each afferent-MN synapse. At least 6 afferents converge on each MN, and at short interspike intervals the afferent-evoked EPSPs are enhanced by as much as 400% by homosynaptic facilitation. The EPSP is abolished reversibly by the cholinergic antagonists curare and atropine, suggesting that the neurotransmitter at the synapse is acetylcholine (ACh). This is of particular interest because the ACh receptors of tobacco-feeding Manduca larvae are reported to be less nicotine-sensitive than those of other insects.  相似文献   

11.
The vertebrate optokinetic nystagmus (OKN) is a compensatory oculomotor behavior that is evoked by movement of the visual environment. It functions to stabilize visual images on the retina. The OKN can be experimentally evoked by rotating a drum fitted with stripes around the animal and has been studied extensively in many vertebrate species, including teleosts. This simple behavior has earlier been used to screen for mutations affecting visual system development in the vertebrate model organism zebrafish. In such a screen, we have found a significant number of homozygous belladonna (bel) mutant larvae to be defective in the correct execution of the OKN [1]. We now show that about 40% of homozygous bel larvae display a curious reversal of the OKN upon visual stimulation. Monocular stimulation leads to primary activation of ipsilateral eye movements in larvae that behave like the wild type. In contrast, affected larvae display contralateral activation of eye movements upon monocular stimulation. Anatomical analysis of retinal ganglion cell axon projections reveal a morphological basis for the observed behavioral defect. All animals with OKN reversal are achiasmatic. Further behavioral examination of affected larvae show that OKN-reversed animals execute this behavior in a stimulus-velocity-independent manner. Our data support a parsimonious model of optokinetic reversal by the opening of a controlling feedback loop at the level of the optic chiasm that is solely responsible for the observed behavioral abnormality in mutant belladonna larvae.  相似文献   

12.

Background

Global motion detection is one of the most important abilities in the animal kingdom to navigate through a 3-dimensional environment. In the visual system of teleost fish direction-selective neurons in the pretectal area (APT) are most important for global motion detection. As in all other vertebrates these neurons are involved in the control of slow phase eye movements during gaze stabilization. In contrast to mammals cortical pathways that might influence motion detection abilities of the optokinetic system are missing in teleost fish.

Results

To test global motion detection in goldfish we first measured the coherence threshold of random dot patterns to elicit horizontal slow phase eye movements. In addition, the coherence threshold of the optomotor response was determined by the same random dot patterns. In a second approach the coherence threshold to elicit a direction selective response in neurons of the APT was assessed from a neurometric function. Behavioural thresholds and neuronal thresholds to elicit slow phase eye movements were very similar, and ranged between 10% and 20% coherence. In contrast to these low thresholds for the optokinetic reaction and APT neurons the optomotor response could only be elicited by random dot patterns with coherences above 40%.

Conclusion

Our findings suggest a high sensitivity for global motion in the goldfish optokinetic system. Comparison of neuronal and behavioural thresholds implies a nearly one-to-one transformation of visual neuron performance to the visuo-motor output. In addition, we assume that the optomotor response is not mediated by the optokinetic system, but instead by other motion detection systems with higher coherence thresholds.  相似文献   

13.
Eye movements are very important in order to track an object or to stabilize an image on the retina during movement. Animals without a fovea, such as the mouse, have a limited capacity to lock their eyes onto a target. In contrast to these target directed eye movements, compensatory ocular eye movements are easily elicited in afoveate animals1,2,3,4. Compensatory ocular movements are generated by processing vestibular and optokinetic information into a command signal that will drive the eye muscles. The processing of the vestibular and optokinetic information can be investigated separately and together, allowing the specification of a deficit in the oculomotor system. The oculomotor system can be tested by evoking an optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) or a visually-enhanced vestibulo-ocular reflex (VVOR). The OKR is a reflex movement that compensates for "full-field" image movements on the retina, whereas the VOR is a reflex eye movement that compensates head movements. The VVOR is a reflex eye movement that uses both vestibular as well as optokinetic information to make the appropriate compensation. The cerebellum monitors and is able to adjust these compensatory eye movements. Therefore, oculography is a very powerful tool to investigate brain-behavior relationship under normal as well as under pathological conditions (f.e. of vestibular, ocular and/or cerebellar origin).Testing the oculomotor system, as a behavioral paradigm, is interesting for several reasons. First, the oculomotor system is a well understood neural system5. Second, the oculomotor system is relative simple6; the amount of possible eye movement is limited by its ball-in-socket architecture ("single joint") and the three pairs of extra-ocular muscles7. Third, the behavioral output and sensory input can easily be measured, which makes this a highly accessible system for quantitative analysis8. Many behavioral tests lack this high level of quantitative power. And finally, both performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9.Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8.  相似文献   

14.
The functional properties of the three horizontal cells (north horizontal cell, HSN; equatorial horizontal cell, HSE; south horizontal cell, HSS) in the lobula plate of the blowflyCalliphora erythrocephala were investigated electrophysiologically. 1. The receptive fields of the HSN, HSE, and HSS cover the dorsal, equatorial and ventral part of the ipsilateral visual field, respectively. In all three cells, the sensitivity to visual stimulation is highest in the frontal visual field and decreases laterally. The receptive fields and spatial sensitivity distributions of the horizontal cells are directly determined by the position and extension of their dendritic fields in the lobula plate and the dendritic density distributions within these fields. 2. The horizontal cells respond mainly to progressive (front to back) motion and are inhibited by motion in the reverse direction, the preferred and null direction being antiparallel. The amplitudes of motion induced excitatory and inhibitory responses decline like a cosine function with increasing deviation of the direction of motion from the preferred direction. Stimulation with motion in directions perpendicular to the preferred direction is ineffective. 3. The preferred directions of the horizontal cells show characteristic gradual orientation changes in different parts of the receptive fields: they are horizontally oriented only in the equatorial region and increasingly tilted vertically towards the dorsofrontal and ventrofrontal margins of the visual field. These orientation changes can be correlated with equivalent changes in the local orientation of the lattice of ommatidial axes in the pertinent compound eye. 4. The response amplitudes of the horizontal cells under stimulation with a moving periodic grating depend strongly on the contrast frequency of the stimulus. Maximal responses were found at contrast frequencies of 2–5 Hz. 5. The spatial integration properties of the horizontal cells (studied in the HSE) are highly nonlinear. Under stimulation with extended moving patterns, their response amplitudes are nearly independent of the size of the stimuli. It is demonstrated that this response behaviour does not result from postsynaptic saturation in the dendrites of the cells. The results indicate that the horizontal system is essentially involved in the neural control of optomotor torque responses performed by the fly in order to minimize unvoluntary deviations from a straight flight course.  相似文献   

15.
Axonal regeneration and remyelination of peripheral motor neurons (MNs) are critical for restoring neuromuscular motor function after injury or peripheral neuropathy. We examined whether optogenetically mediated light stimulation (OMLS) could enhance the axon outgrowth and myelination of MNs using three-dimensional motor neuron–Schwann cell (MN–SC) coculture on a microfluidic biochip. The biochip was designed to allow SCs to interact with the axons of MNs, while preventing direct contact between SCs and the cell bodies of MNs. Following coculture with SCs on the microfluidic biochip, MNs were transfected with a light-sensitive channelrhodopsin gene. Transfected MNs subjected to repeated light stimulation (20 Hz, 1 hr) produced significantly longer axons than nontransfected MNs. OMLS of MNs greatly increased the number of myelin basic protein (MBP)-expressing SCs, promoting the initiation of myelination of MNs. Ultrastructurally, OMLS of MNs markedly enhanced the thickness of the compact myelin sheath around the MN axons such that the average thickness was closer to that of the theoretical estimates in vivo. Thus, the MN–SC coculture model on a microfluidic biochip augmented by OMLS of MNs is a feasible platform for studying the relationship of neuronal activity with regrowth and remyelination.  相似文献   

16.
The dorsomedial motor nuclei were demonstrated by the cobalt-labeling technique applied to the so-called somatic motor cranial nerves. The motoneurons constituting these nuclei are oval-shaped and smaller than the motoneurons in the ventrolateral motor nuclei. They give rise to ventral and dorsal dendrite groups which have extensive arborization areas. A dorsolateral cell group in the rostral three quarters of the oculomotorius nucleus innervates ipsilateral eye muscles (m.obl.inf., m.rect.inf., m.rect.med.) and a ventromedial cell group innervates the contralateral m. rectus superior. Ipsilateral axons originate from ventral dendrites, contralateral axons emerge from the medial aspect of cell bodies, or from dorsal dendrites, and form a "knee" as they turn around the nucleus on their way to join the ipsilateral axons. A few labeled small cells found dorsal and lateral to the main nucleus in the central gray matter are regarded as representing the nucleus of Edinger-Westphal. The trochlearis nucleus is continuous with the ventromedial cell group of the oculomotorius nucleus. The axons originate in dorsal dendrites, run dorsally along the border of the gray matter and pierce the velum medullare on the contralateral side. A compact dendritic bundle of oculomotorius neurons traverse the nucleus, and side branches appear to be in close apposition to the trochlearis neurons. A dorsomedial and a ventrolateral cell group becomes labeled via the abducens nerve. The former supplies the m. rectus lateralis, while the latter corresponds to the accessorius abducens nucleus which innervates the mm. rectractores. Neurons in this latter nucleus are large and multipolar, resembling the neurons in the ventrolateral motor nuclei. Their axons originate from dorsal dendrites and form a "knee" around the dorsomedial aspect of the abducens nucleus. Cobalt applied to the hypoglossus nerve reaches a dorsomedial cell group (the nucleus proper), spinal motoneurons and sympathetic preganglionic neurons. Of the dorsomedial motor cells, the hypoglossus neurons are the largest, and a branch of their ventral dendrites terminates on the contralateral side. Some functional and developmental biological aspects of the morphological findings, such as the crossing axons and the peculiar morphology of the accessory abducens nucleus, are discussed.  相似文献   

17.
Direction-sensitive partitioning of the honeybee optomotor system   总被引:1,自引:0,他引:1  
ABSTRACT. The horizontal motion-detecting system controlling optomotor head-turning behaviour in honeybees, Apis mellifera , was found to be partitioned into two separate subsystems. Each subsystem is direction-specific such that visual stimulation in the preferred direction elicited a high level of responses that correcly followed the movement, whereas stimulation in the non-preferred direction resulted in response levels comparable to or lower than those for blinded controls. The results indicate that medial eye regions are specialized for the detection of posterior-to-anterior movements and lateral regions are specialized for detecting anterior-to-posterior motion. A model suggesting possible neural correlates for this functional subdivision of the optomotor response is proposed.  相似文献   

18.
Tethered flying desert locusts, Schistocerca gregaria, generate yaw-torque in response to rotation of a radial grating located beneath them. By screening parts of the pattern, rotation of the unscreened grating turned out to induce a compensatory steering (by pattern motion within transversally oriented 90° wide sectors) as well as an upwind/downwind turning response (by pattern motion within the anterior ventral 90° wide sector). The strength and polarity of responses upon the unscreened grating results from a linear superposition of these two response components. The results are discussed with regard to a functional specialization of eye regions.In a typical experiment, 3 consecutive flight-phases, assumed to mirror start, long-range flight, and landing of a free-flying locust, were distinguished. They may result from a time dependent variation of the polarity and relative strength of upwind/downwind turning and compensatory steering responses. Starting and landing phases were under strong optomotor control and were dominated by the high-gain compensatory steering. In contrast, the phase of long-range flight was under weak optomotor control resulting from a low gain in both of the two response components. The biological significance of this variable strength of optomotor control on free flight orientation of swarming locusts is discussed.  相似文献   

19.
运动图形刺激时家兔的视动震颤反应   总被引:3,自引:2,他引:1  
旨在用实验方法研究家兔的视动震颤(OKN)眼动特点以及单侧前庭迷路损伤对OKN的影响,结果表明:单眼刺激时,家兔的OKN反应存在着从颞侧到鼻侧方向的方向优势;恒定速度刺激时,刺激开始后,家兔的OKN眼动跟踪速度具有从小到大最后趋于稳态的建立过程,刺激消失后,存在眼动速度由大到小直到消失的视动后震颤(OKAN)反应,这两个过程反应了OKN系统中可能存在速度存储机制及其对OKN眼动的控制作用;单侧前庭  相似文献   

20.
V R Galoian 《Biofizika》1978,23(2):370-378
A comparative study of torsional movement of the eye in passive and active tilting of the head and body of the object was carried out. Similarity of torsional movement of the eyes in passive and active movements was shown. It was found by the method of exclusion and selective stimulation of vestibular, cervikal, lumbar optokinetic reflexes, that neither the cervikal, nor lumbar reflexes elicited spontaneous torsional movements of the eyes and had no influence on them. A direct study (coinciding with rotation direction of the stimulus of head rotation) and the reverse (noncoinciding) torsional tracing of a rotating disc and tracing without head movements was investigated. During direct tracing depression of saccades and extention of the slow phase of torsion was found; during the reverse one--a decrease of the eye drist and increase of the amplitude and number of saccades. Phenomena of a seeming acceleration and deceleration of disc rotation etc. have been observed. It was found that with torsional saccades vision was retained. The presence of optokinetic control of phases of torsional eye movements formation has been recorded. Tracing without rotation of the head was accompanied by torsional nistagmus. Possible causes of incomplete stabilisation and optokinetic torsional tracing are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号