首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of HDL1 lipoprotein infusion on biliary lipid secretion were studied in thein vitro model of rat perfused liver. A strong increase in bile flow was observed during and after lipoprotein infusion. This caused a significant rise in cholesterol, phospholipid and bile salt secretions. However, only the percentage of cholesterol increased with respect to the other bile lipids. The changes observed in the cholesterol/phospholipid molar ratio values of liver membrane subfractions (i.e., liver plasma membrane, mitochondria plus lysosomes and microsomes) isolated from the perfused rat liver after HDL1 administration were not significant.  相似文献   

2.
A number of organic anions are known to decrease biliary secretion of cholesterol and phospholipid without affecting bile acid secretion. Cyclobutyrol (CB) is a choleretic agent which also inhibits biliary lipid secretion. Using isolated perfused rat liver we have studied this inhibition in relation to possible mechanisms suggested for other anions. Shortly after its administration to the isolated perfused liver, CB decreases biliary outputs of cholesterol and phospholipid, without changes in bile acid secretion, at low (450 nmol/min), high (1350 nmol/min) and nil taurocholate infusion rates. The absolute inhibition does not appear to be decreased by elevated bile acid secretion. There is a differential effect on secretion of cholesterol and phospholipid, more marked at low bile acid secretion rates. Biliary outputs of the canalicular membrane enzymes 5'-nucleotidase and alkaline phosphodiesterase I are also depressed by CB administration, but the anion does not affect the biliary output of bovine serum albumin or the output of rat serum albumin into the perfusion fluid. Since CB does not inhibit intracellular vesicular transport or apparently inhibit intracanalicular events, its effect is different from the effect of several other anions. From these studies it appears that the most likely effect of CB is exerted at the level of the canalicular membrane.  相似文献   

3.
The effects of i.v. administration of secretin, CCK-PZ, acid extracts from the duodenal mucosa and the duodenal acidification of the intestine on bile secretion were studied in anaesthetized chickens. Secretin and acid extracts from the duodenal mucosa, which increase bile flow, caused comparable modifications in bile composition; infusion of HCl to the duodenum only induced slight modifications. CCK-PZ caused a pronounced cholecystokinetic effect and, to a lesser degree, it also showed choleretic effects. The results suggest that in the hormonal regulation of bile secretion in the chicken CCK-PZ is more important than secretin and furthermore that the choleretic activity of the latter must be carried out by other secretin-like peptides.  相似文献   

4.
The effects of sodium cyclobutyrate, a synthetic hydrocholeretic drug, on biliary lipid secretion and on the biliary outputs of several plasma-membrane enzymes were investigated in anaesthetized rats. Administration of a single oral dose of cyclobutyrol (0.72 mmol/kg body wt.) reduced biliary concentration and output of cholesterol and phospholipid. However, bile acid secretion was not significantly modified. This uncoupling effect of lipid secretion remained even when the choleretic response to the drug had ceased. It additionally led to a statistically significant decrease in the cholesterol/bile acid and phospholipid/bile acid molar ratios and in the lithogenic index of the bile. The biliary outputs of the plasma-membrane enzymes alkaline phosphatase and gamma-glutamyltransferase were markedly reduced by the drug. When cyclobutyrol was administered to rats which had been previously fed with a high-cholesterol diet, the effects of cyclobutyrol persisted, but were less marked. Our results demonstrate that the bile acid-independent choleresis induced by cyclobutyrol (related to its pharmacokinetic effect) is accompanied by a pharmacodynamic action that selectively reduces the secretion of biliary lipids. This is due to an uncoupling of the secretion of cholesterol and phospholipids from that of bile acids. Possible explanations for the biliary response to cyclobutyrol are discussed.  相似文献   

5.
To further define thyroid hormone effects on bile acid synthesis and biliary lipid secretion, studies were done in chronic bile fistula rats. Euthyroid and methimazole-hypothyroid rats, with and without triiodothyronine (T3) injection, had total bile diversion for timed bile collections. With interrupted enterohepatic circulation, cholesterol absorption is negligible and bile acid secretion equals bile acid synthesis rate. Hypothyroid rats had diminished levels of bile acid synthesis and biliary secretion of cholesterol and phospholipid. Single dose T3 injection produced a 13-fold increase in bile cholesterol secretion and a 3-fold increase in phospholipid secretion, both initiated 12 h after T3. Bile acid synthesis increased by 50%, but the increase did not begin until 24 h after T3. Neither hypothyroidism nor T3 treatment abolished diurnal rhythms of bile acid synthesis and biliary lipid secretion. Inhibition of cholesterol synthesis with lovastatin resulted in a persistent 33% decrease in bile acid synthesis in euthyroid and hypothyroid rats, while bile cholesterol secretion only transiently decreased. Inhibition of cholesterol synthesis did not alter T3-induced bile cholesterol secretion, with a 10-fold increase seen. However, bile acid synthesis was not stimulated by T3 in the presence of lovastatin. We conclude that facilitated bile acid synthesis and biliary cholesterol secretion are early effects of T3 and may account for the hypocholesterolemia of T3. Cholesterol synthesis does not appear to be required for the T3-induced bile cholesterol secretion.  相似文献   

6.
d-Limonene enhanced bile flow in rats and dogs with a dose response correlation. The choleretic activity was much higher in the metabolites of d-limonene such as p-mentha-1,8-dien-10-ol, p-menth-1-ene-8,9-diol and p-mentha-1,8-dien-6-ol than d-limonene, and this suggested that the choleretic activity of d-limonene was attributable at least in part to its metabolites.The choleretic activities of esters of p-menth-1-ene-8,9-diol with acetic acid, propionic acid, stearic acid, palmitic acid, linoleic acid, benzoic acid, salicylic acid, α-naphthylacetic acid and nicotinic acid were also investigated in rats. Among these compounds, acetate, propionate and nicotinate possessed considerable, but lesser activities than the original diol. In dogs, however, the choleretic activity of p-menth-l-ene-8,9-diol acetate and propionate was much higher than that of original diol, suggesting that the choleretic activity of these esters is attributable to the esters themselves.d-Limonene decreased the ratio of biliary bile salts and phospholipids to cholesterol, whereas p-menth-l-ene-8,9-diol increased it.  相似文献   

7.
The present study concerns short- and long-term effects of interruption of the enterohepatic circulation (EHC) on hepatic cholesterol metabolism and biliary secretion in rats. For this purpose, we employed a technique that allows reversible interruption of the EHC, during normal feeding conditions, and excludes effects of anaesthesia and surgical trauma. [3H]Cholesteryl oleate-labelled human low-density lipoprotein (LDL) was injected intravenously in rats with (1) chronically (8 days) interrupted EHC, (2) interrupted EHC at the time of LDL injection and (3) intact EHC. During the first 3 h after interruption of the EHC, bile flow decreased to 50% and biliary bile acid, phospholipid and cholesterol secretion to 5%, 11% and 19% of their initial values respectively. After 8 days of bile diversion, biliary cholesterol output and bile flow were at that same level, but bile acid output was increased 2-3-fold and phospholipid output was about 2 times lower. The total amount of cholesterol in the liver decreased after interruption of the EHC, which was mainly due to a decrease in the amount of cholesteryl ester. Plasma disappearance of LDL was not affected by interruption of the EHC. Biliary secretion of LDL-derived radioactivity occurred 2-4 times faster in chronically interrupted rats as compared with the excretion immediately after interruption of the EHC. Radioactivity was mainly in the form of bile acids under both conditions. This study demonstrates the very rapid changes that occur in cholesterol metabolism and biliary lipid composition after interruption of the EHC. These changes must be taken into account in studies concerning hepatic metabolism of lipoprotein cholesterol and subsequent secretion into bile.  相似文献   

8.
Extracts from artichoke leaves are traditionally used in the treatment of dyspeptic and hepatic disorders. Various potential pharmacodynamic effects have been observed in vitro for mono- and dicaffeoylquinic acids (e.g. chlorogenic acid, cynarin), caffeic acid and flavonoids (e.g. luteolin-7-O-glucoside) which are the main phenolic constituents of artichoke leaf extract (ALE). However, in vivo not only the genuine extract constituents but also their metabolites may contribute to efficacy. Therefore, the evaluation of systemic availability of potential bioactive plant constituents is a major prerequisite for the interpretation of in vitro pharmacological testing. In order to get more detailed information about absorption, metabolism and disposition of ALE, two different extracts were administered to 14 healthy volunteers in a crossover study. Each subject received doses of both extracts. Extract A administered dose: caffeoylquinic acids equivalent to 107.0 mg caffeic acid and luteolin glycosides equivalent to 14.4 mg luteolin. Extract B administered dose: caffeoylquinic acids equivalent to 153.8 mg caffeic acid and luteolin glycosides equivalent to 35.2 mg luteolin. Urine and plasma analysis were performed by a validated HPLC method using 12-channel coulometric array detection. In human plasma or urine none of the genuine target extract constituents could be detected. However, caffeic acid (CA), its methylated derivates ferulic acid (FA) and isoferulic acid (IFA) and the hydrogenation products dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) were identified as metabolites derived from caffeoylquinic acids. Except of DHFA all of these compounds were present as sulfates or glucuronides. Peak plasma concentrations of total CA, FA and IFA were reached within 1 h and declined over 24 h showing almost biphasic profiles. In contrast maximum concentrations for total DHCA and DHFA were observed only after 6-7 h, indicating two different metabolic pathways for caffeoylquinic acids. Luteolin administered as glucoside was recovered from plasma and urine only as sulfate or glucuronide but neither in form of genuine glucosides nor as free luteolin. Peak plasma concentrations were reached rapidly within 0.5 h. The elimination showed a biphasic profile.  相似文献   

9.
The correlation between the secretion of biliary phospholipid (PL) and bile acid suggests a regulatory effect of bile acid on PL secretion. Bile acids may influence PL synthesis and/or the mobilization of a preformed PL pool. The objective of this study was to determine the contribution of these two sources to biliary PL, by using an experimental protocol in which dehydrocholic acid (DHCA) and cholic acid (CA) were infused to manipulate biliary PL secretion. In control rats, there was a steady state in bile flow. PL secretion and the biliary secretion of newly synthesized phosphatidylcholine (PC). The specific radioactivity of PC in bile was significantly higher than in plasma, microsomes and canalicular membranes. DHCA infusion decreased biliary PC secretion rate by 80%, and secretion returned to normal values at the transport maximum of CA. The specific radioactivity of biliary PC was decreased by 30% by DHCA infusion and reached normal values during CA infusion. There were no significant changes in the specific radioactivity of PC in plasma or cellular organelles during infusion of bile acids. These data indicate that: (1) newly synthesized PC contributes a small percentage to biliary PC; thus a preformed pool (microsomal and extrahepatic) is a major source of biliary PL; (2) the contribution of the extrahepatic pool to the biliary PL may be more important than the microsomal pool.  相似文献   

10.
The control of biliary phospholipid and cholesterol secretions by bile acid was studied by using the technique of retrograde intrabiliary injection. Taurocholate (TC), a moderately hydrophobic bile acid, taurodehydrocholate (TDHC), a hydrophilic non-micelle-forming bile acid, and 3-[(3-cholamidopropyl)-dimethylammonio]propane-1-sulphonate (CHAPS), a detergent, were individually administered by retrograde intrabiliary injection (RII) into the biliary tree, and bile acids, phospholipids and cholesterol subsequently appearing in the bile were measured. TC (1.3 mumol; 45 microliters) injected retrogradely provoked a 3.5-fold increase in biliary phospholipid output for 40 min, as compared with the saline control. Injection of 2.7 mumol of TC (90 microliters) caused a 7.5-fold increase in phospholipid output, which reached a peak at 12 min after RII, and phospholipid output continued for 40 min. Cholesterol output was also elicited under these conditions, showing both dose-dependency and extended secretion. Injection of 1.8 mumol of TDHC caused very little increase in either biliary phospholipid or cholesterol. Injection of 0.9 mumol of CHAPS (45 microliters) provoked a single substantial peak of phospholipid output in the 3 min bile sample. T.l.c. analysis of the phospholipid extracts of the bile collected after each compound showed, for TC, a single compound which co-migrated with the phosphatidylcholine standard, whereas for CHAPS substantial amounts of other phospholipids were present.  相似文献   

11.
To determine whether growth hormone (GH) has any impact on the hyperlipidemia seen in cholestatic patients, graded doses of GH in the sequence of 0.1, 0.2, 0.4, and 0.6 u/kg every other day were administered sc to a patient with Alagille syndrome. Serum total cholesterol, phospholipid, and bile acid were measured. The serum levels of all three decreased markedly after GH administration and the lowest levels were observed on the second day after the GH dose of 0.4 u/kg. However, they increased thereafter despite the administration of an increased dose of GH; especially the serum bile acid level returned to the initial value by day 8. Serum levels of SM-C and fT3 were not correlated with the changes in total cholesterol, phospholipid, and bile acid after GH administration. We suggest that the administration of GH may affect the state of hyperlipidemia seen in cholestatic patients.  相似文献   

12.
The biological effects of bile acids depend largely upon their molecular structure. When bile acid uptake exceeds the maximal biliary secretory rate (SRm) cholestasis occurs. In order to characterize the influence of bile acid structure on its cholestatic potency we systematically studied SRm, maximal bile flow, maximal and cumulative phospholipid and cholesterol secretion with different taurine-conjugated tri-, di- and keto bile acids (Table I) in the isolated perfused rat liver. Bile acids with a high critical micellar concentration (CMC) promoted the greatest bile flow; a positive non-linear correlation between CMC and maximal bile flow was found. 3 alpha-Hydroxylated bile acids with a hydroxyl group in 6 alpha and/or 7 beta position and lacking a 12 alpha hydroxy group had a high SRm. SRm was not related to CMC or maximal bile flow, respectively. Phospholipids and cholesterol were secreted in a nearly fixed ratio of 12:1; a strong linear relationship could be observed. Cumulative phospholipid secretion over 48 min was significantly lower for non and poor micelle forming bile acids (TDHC and TUC) than for those with comparatively low CMC values (TUDC, TC, THC, THDC, TCDC) (70-140 vs. 210-450 nmol/g liver). At SRm all bile acids with good micelle forming properties showed a similar cumulative biliary lipid output. However, when biliary lipid output was related to 1 mumol bile acid secreted bile acids with a low SRm induced the highest lipid secretion (TCDC, TC). These data (1) demonstrate that a 6 alpha and/or a 7 beta hydroxy group on the steroid nucleus reduce cholestatic potency if the 12 alpha hydroxy group is absent, (2) suggest that in the case of micelle forming bile acids the total amount of phospholipids secreted in bile (depletion of cellular phospholipids) is associated with the occurrence of cholestasis whereby bile acids with a low SRm deplete the cellular phospholipid content at much lower bile acid concentrations than those with a higher SRm and (3) imply that bile acids with non and poor micelle forming properties (TDHC, TUC) presumably do not cause cholestasis (solely) by depletion of cellular phospholipids.  相似文献   

13.
The effect of daily ingestion for 7 days of ethinyloestradiol (30 micrograms) plus DL-norgestrel [0.5 mg] (Eugynon-30) on the lipid composition of duodenal bile in 8 healthy young women was investigated from the fifth day after onset of menstrual bleeding. This treatment did not significantly affect the concentrations of cholesterol, phospholipid and total bile acids expressed as mmol/l, nor the mean molar percentage of phospholipid. However, the treatment caused a significant increase in the mean molar percentage of cholesterol which was accompanied by a significant decrease in the mean molar percentage of total bile acids. The cholesterol saturation index of the bile of 7 subjects was elevated after treatment while both serum cholesterol and testosterone were significantly reduced. The results show that administration to healthy young women, not previously exposed to oral contraceptives, with a low oestrogen-progestin preparation for only 7 days produces a more lithogenic bile, accompanied by a decrease in serum cholesterol and plasma testosterone concentrations.  相似文献   

14.
The present study describes a novel technique for investigations of the enterohepatic circulation in the hamster with an extracorporeal bile duct that allows long-term bile collection in the free-moving animal. The animals recovered for 7 days after the operation before the external loop was cut and bile was collected over a period of 78 h. Under these optimal conditions, initial bile flow (651 +/- 89 microliters per 100 g.h-1) and the secretion rates of biliary lipids were several-fold higher than reported in an earlier study using the acute fistula hamster. Biliary cholesterol secretion amounted to 369 +/- 32 nmol per 100 g.h-1, phospholipid secretion was 2.6 +/- 0.3 mumol per 100 g.h-1, and total bile acid secretion was 31.9 +/- 2.2 mumol per 100 g.h-1. A clearcut diurnal rhythm was demonstrated for bile flow and all biliary constituents. After 9 h the depletion of the bile acid pool was complete and cholic acid synthesis derepressed 1.4-fold from a basal rate of 818 nmol per 100 g.h-1, whereas the derepression of chenodeoxycholic acid synthesis was even less pronounced. Biliary cholesterol output increased 2.2-fold, but the phospholipid secretion was constant during the full experiment. It may be concluded that the technique of an extracorporeal bile duct in the free-moving animal allows studies of bile secretion under optimal conditions. Most likely the bile secretion rates given above approach the physiological rates in the hamster.  相似文献   

15.
Bile acid structure and bile formation in the guinea pig   总被引:2,自引:0,他引:2  
The effects of intravenous infusions (1-4 mumol/min/kg) of 14 bile acids, cholic, deoxycholic, ursodeoxycholic, chenodeoxycholic, dehydrocholic, and their glycine and taurine conjugates, on bile flow and composition and on the biliary permeation of inert carbohydrates have been studied in the guinea pig bile fistula. Hydroxy bile acids were eliminated in bile without major transformation, except for conjugation (over 90%) when unconjugated bile acids were infused. During infusion of dehydrocholate and taurodehydrocholate, 77-100% of the administered dose was recovered in bile as 3-hydroxy bile acids, thus indicating that reduction of the keto group in position 3 was virtually complete. All bile acids produced choleresis at the doses employed: the strongest choleretic was deoxycholate (81.78 microliters/mumol), the weakest was taurodehydrocholate (10.2 microliters/mumol). Choleretic activity was directly and linearly related to bile acid hydrophobicity, as inferred by HPLC, both for similarly conjugated bile acids, and for bile acids having the same number, position, or configuration of the hydroxyl groups. In all instances, the rank ordering was: deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate. During choleresis produced by any of the bile acids tested, bicarbonate concentration in bile slightly declined, but the calculated concentration in bile-acid-stimulated bile (45-57 mmol/l) was always higher than that measured in plasma (23-26 mmol/l). Biliary concentrations of cholesterol (20-68 mumol/l) and phospholipid (14-63 mumol/l) were very low during spontaneous secretion, and declined even further following bile acid choleresis. None of the infused bile acids consistently modified biliary excretion of cholesterol and phospholipid. Consistent with a previous observation from this laboratory, all hydroxy bile acids reversibly diminished [14C]erythritol and [14C]mannitol biliary entry during choleresis, while they increased or failed to modify that of [3H]sucrose and [3H]inulin. The rank ordering for the inhibitory effect on [14C]erythritol and [14C]mannitol permeation was: 3 alpha,7 alpha,12 alpha-trihydroxy greater than 3 alpha,7 alpha-dihydroxy greater than 3 alpha,7 beta-dihydroxy greater than 3 alpha,12 alpha-dihydroxy bile acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effects of 10 differently structured bile acids on bile flow and composition were studied in anesthetized, bile duct-cannulated guinea pigs. At the infusion rates of 2 and 4 mumole/min/kg, all bile acids produced choleresis. The most potent was chenodeoxycholate, which increased bile flow by an average of 31.25 microliters/mumole of bile acids excreted in bile. The weakest choleretic was tauroursodeoxycholate (11.02 mu/mumole). When the choleretic activity was plotted against bile acid hydrophobicity (high-performance liquid chromatography retention factor, obtained from the literature), linearity was observed with similarly conjugated bile acids. The order of potency was deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate, both for the glycine and taurine conjugates, and for the unconjugated bile acids as well. Conjugation was also important, and the rank ordering for the choleretic activity (unconjugated bile acids greater than glycine-conjugates greater than taurine-conjugates) was the same as that for the hydrophobicity. When the choleretic activity was plotted against bile acid micellar aggregation number (in 0.15 M NaCl at 36 degrees C, obtained from the literature), a linear, direct relationship was observed. All bile acids produced similar effects on bile electrolyte concentrations: both bicarbonate and chloride slightly declined during choleresis, whereas bile acid concentrations increased. These studies suggest that, in the guinea pig the differing choleretic activities of differently structured bile acids are not due to their forming micelles in bile of different sizes; either the more hydrophobic bile acids form vesicles, whereas the more hydrophilic form micelles; or bile acids produce choleresis, in part or exclusively, by stimulating an additional secretory mechanism, possibly an inorganic ion pump; or both.  相似文献   

17.
Bile acid metabolism in partially hepatectomized rats   总被引:2,自引:0,他引:2  
S Fukano  Y Saitoh  K Uchida  T Akiyoshi  K Takeda 《Steroids》1985,45(3-4):209-227
The bile flow and the bile acid secretion, calculated on liver weight basis, increased 12 H and 24 H after 60-70% hepatectomy and returned to the initial levels thereafter. The biliary phospholipid secretion much more increased than bile acids, but the cholesterol secretion decreased. Bile acid composition changed with an increase of the cholic acid group and a decrease of the chenodeoxycholic acid group in both bile and feces. These changes almost disappeared on Day 14. The pool size of bile acid decreased maximally on Day 4 to about 40% of the initial, but the distribution of bile acids in the enterohepatic circulation was not changed. The fecal cholesterol and coprostanol markedly decreased on Day 2 but gradually returned to the initial levels according to the recovery of diet intake. The fecal bile acids decreased on Day 2, increased on Day 4, and returned to the normal range after Day 7. In conclusion, the regenerating liver secretes more bile, bile acids and phospholipids, and less cholesterol than the normal liver. Cholic acid predominates in the bile acids. These changes restored to the initial levels by about one week after the operation.  相似文献   

18.
The role of Endothelin-1 (ET-1) in the central nervous system is not fully understood yet although several studies strongly support its neuromodulatory role. A high density of endothelin receptors is present in the dorsal vagal complex that is the major site for the regulation of the digestive function. Therefore in the present study we sought to establish the role of ET-1 in the central regulation of bile secretion in the rat. Intracerebroventricular ET-1 injection exhibited opposite behaviors on spontaneous bile secretion according to the dose administered. Lower doses of ET-1 (1 fM) increased bile flow and bicarbonate excretion whereas higher doses (1 nM) decreased bile flow and bile acid output. Both the choleretic and the cholestatic effects of ET-1 were abolished in animals pretreated with icv BQ-610 (selective ETA antagonist) but not with BQ-788 (selective ETB antagonist). In addition, truncal vagotomy but not adrenergic blockade abolished ET-1 effects on bile secretion. Brain nitric oxide was not involved in ET-1 response since L-NAME pretreatment failed to affect ET-1 actions on the liver. Portal venous pressure was increased by centrally administered ET-1 being the magnitude of the increase similar with low and high doses of the peptide. These results show that centrally applied ET-1 modified different bile flow fractions independent of hemodynamic changes. Lower doses of ET-1 increased bile acid independent flow whereas higher doses decreased bile acid dependent flow. Vagal pathways through the activation of apparently distinct ETA receptors mediated the cholestatic as well as the choleretic effects induced by ET-1. Present findings show that ET-1 participates in the central regulation of bile secretion in the rat and give further insights into the complexity of brain-liver interaction.  相似文献   

19.
These studies were undertaken to characterize the role of plasma membrane cholesterol in canalicular secretory functions and hepatocyte integrity against intravenous taurocholate administration. Cholesterol and sphingomyelin concentrations and cholesterol/phospholipid ratios were significantly increased in canalicular membranes of diosgenin-fed rats, suggesting a more resistant structure against solubilization by taurocholate. During taurocholate infusion, control rats had significantly decreased bile flow, whereas diosgenin-fed animals maintained bile flow. Maximal cholesterol output increased by 176% in diosgenin-fed rats, suggesting an increased precursor pool of biliary cholesterol in these animals. Maximal phospholipid output only increased by 43% in diosgenin-fed rats, whereas bile salt output remained at control levels. The kinetics of glutamic oxalacetic transaminase, lactic dehydrogenase, and alkaline phosphatase activities in bile showed a significantly faster release in control than in diosgenin-fed rats. After 30 min of intravenous taurocholate infusion, necrotic hepatocytes were significantly increased in control animals. Preservation of bile secretory functions and hepatocellular cytoprotection by diosgenin against the intravenous infusion of toxic doses of taurocholate was associated with an increased concentration of cholesterol and sphingomyelin in the canalicular membrane. The increase of biliary cholesterol output induced by diosgenin was correlated to the enhanced concentration of cholesterol in the canalicular membrane.  相似文献   

20.
The effects of the choleretic and cholesterol lowering compound, 2,4,6-trihydroxyacetophenone (THA) and its analog, 2,6-dihydroxyacetophenone (DHA), on ileal bile acid absorption were investigated in rats. THA inhibited taurocholate (TC) uptake into ileal brush-border membrane vesicles (BBMV), showing a maximum inhibition of 50%, whereas DHA completely inhibited TC uptake into ileal BBMV. THA exhibited competitive inhibition with a Ki of 9.88 mM, while DHA showed non-competitive inhibition with a Ki of 7.65 mM. Both total and ouabain-sensitive basolateral membrane (BLM) Na+-K+-ATPase activities, which are essential for maintenance of the Na+-gradient for bile acid transport, were inhibited by THA and DHA in a dose-dependent manner. The inhibition of BLM ATPase was uncompetitive with a Ki of 10.1 and 5.0 mM for THA and DHA, respectively. Administration of THA or DHA (400 micromol/kg) twice a day, to hypercholesterolemic rats for 3 weeks caused similar and marked reductions in plasma cholesterol to 60% of the cholesterol-fed controls. The data suggest that the inhibitory actions of THA and DHA on two essential components of ileal bile acid recycling to liver could, in part, contribute to the cholesterol lowering effect of the hydroxyacetophenone compounds. These effects on decreasing bile acid recycling, in combination with their potent choleretic effect, accelerating biliary excretion of bile acids, are responsible for the effective cholesterol lowering capacities of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号