共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a new method for representing the binding site of a protein receptor that allows the use of the DOCK approach to screen large ensembles of receptor conformations for ligand binding. The site points are constructed from templates of what we called \"attached points\" (ATPTS). Each template (one for each type of amino acid) is composed of a set of representative points that are attached to side-chain and backbone atoms through internal coordinates, carry chemical information about their parent atoms and are intended to cover positions that might be occupied by ligand atoms when complexed to the protein. This method is completely automatic and proved to be extremely fast. With the aim of obtaining an experimental basis for this approach, the Protein Data Bank was searched for proteins in complex with small molecules, to study the geometry of the interactions between the different types of protein residues and the different types of ligand atoms. As a result, well-defined patterns of interaction were obtained for most amino acids. These patterns were then used for constructing a set of templates of attached points, which constitute the core of the ATPTS approach. The quality of the ATPTS representation was demonstrated by using this method, in combination with the DOCK matching and orientation algorithms, to generate correct ligand orientations for >1000 protein--ligand complexes. 相似文献
3.
The prediction of the structure of the protein-protein complex is of great importance to better understand molecular recognition processes. During systematic protein-protein docking, the surface of a protein molecule is scanned for putative binding sites of a partner protein. The possibility to include external data based on either experiments or bioinformatic predictions on putative binding sites during docking has been systematically explored. The external data were included during docking with a coarse-grained protein model and on the basis of force field weights to bias the docking search towards a predicted or known binding region. The approach was tested on a large set of protein partners in unbound conformations. The significant improvement of the docking performance was found if reliable data on the native binding sites were available. This was possible even if data for single key amino acids at a binding interface are included. In case of binding site predictions with limited accuracy, only modest improvement compared with unbiased docking was found. The optimisation of the protocol to bias the search towards predicted binding sites was found to further improve the docking performance resulting in approximately 40% acceptable solutions within the top 10 docking predictions compared with 22% in case of unbiased docking of unbound protein structures. 相似文献
4.
Protein-small molecule docking algorithms provide a means to model the structure of protein-small molecule complexes in structural detail and play an important role in drug development. In recent years the necessity of simulating protein side-chain flexibility for an accurate prediction of the protein-small molecule interfaces has become apparent, and an increasing number of docking algorithms probe different approaches to include protein flexibility. Here we describe a new method for docking small molecules into protein binding sites employing a Monte Carlo minimization procedure in which the rigid body position and orientation of the small molecule and the protein side-chain conformations are optimized simultaneously. The energy function comprises van der Waals (VDW) interactions, an implicit solvation model, an explicit orientation hydrogen bonding potential, and an electrostatics model. In an evaluation of the scoring function the computed energy correlated with experimental small molecule binding energy with a correlation coefficient of 0.63 across a diverse set of 229 protein- small molecule complexes. The docking method produced lowest energy models with a root mean square deviation (RMSD) smaller than 2 A in 71 out of 100 protein-small molecule crystal structure complexes (self-docking). In cross-docking calculations in which both protein side-chain and small molecule internal degrees of freedom were varied the lowest energy predictions had RMSDs less than 2 A in 14 of 20 test cases. 相似文献
5.
A genetic algorithm (GA) for protein-protein docking is described, in which the proteins are represented by dot surfaces calculated using the Connolly program. The GA is used to move the surface of one protein relative to the other to locate the area of greatest surface complementarity between the two. Surface dots are deemed complementary if their normals are opposed, their Connolly shape type is complementary, and their hydrogen bonding or hydrophobic potential is fulfilled. Overlap of the protein interiors is penalized. The GA is tested on 34 large protein-protein complexes where one or both proteins has been crystallized separately. Parameters are established for which 30 of the complexes have at least one near-native solution ranked in the top 100. We have also successfully reassembled a 1,400-residue heptamer based on the top-ranking GA solution obtained when docking two bound subunits. 相似文献
6.
To investigate the effects of multiple protonation states on protein-ligand recognition, we generated alternative protonation states for selected titratable groups of ligands and receptors. The selection of states was based on the predicted pK(a) of the unbound receptor and ligand and the proximity of titratable groups of the receptor to the binding site. Various ligand tautomer states were also considered. An independent docking calculation was run for each state. Several protocols were examined: using an ensemble of all generated states of ligand and receptor, using only the most probable state of the unbound ligand/receptor, and using only the state giving the most favorable docking score. The accuracies of these approaches were compared, using a set of 176 protein-ligand complexes (15 receptors) for which crystal structures and measured binding affinities are available. The best agreement with experiment was obtained when ligand poses from experimental crystal structures were used. For 9 of 15 receptors, using an ensemble of all generated protonation states of the ligand and receptor gave the best correlation between calculated and measured affinities. 相似文献
7.
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively. 相似文献
8.
A distance-dependent knowledge-based potential for protein-protein interactions is derived and tested for application in protein design. Information on residue type specific C(alpha) and C(beta) pair distances is extracted from complex crystal structures in the Protein Data Bank and used in the form of radial distribution functions. The use of only backbone and C(beta) position information allows generation of relative protein-protein orientation poses with minimal sidechain information. Further coarse-graining can be done simply in the same theoretical framework to give potentials for residues of known type interacting with unknown type, as in a one-sided interface design problem. Both interface design via pose generation followed by sidechain repacking and localized protein-protein docking tests are performed on 39 nonredundant antibody-antigen complexes for which crystal structures are available. As reference, Lennard-Jones potentials, unspecific for residue type and biasing toward varying degrees of residue pair separation are used as controls. For interface design, the knowledge-based potentials give the best combination of consistently designable poses, low RMSD to the known structure, and more tightly bound interfaces with no added computational cost. 77% of the poses could be designed to give complexes with negative free energies of binding. Generally, larger interface separation promotes designability, but weakens the binding of the resulting designs. A localized docking test shows that the knowledge-based nature of the potentials improves performance and compares respectably with more sophisticated all-atoms potentials. 相似文献
9.
A new approach to predicting the ligand-binding sites of proteins was developed, using protein-ligand docking computation. In this method, many compounds in a random library are docked onto the whole protein surface. We assumed that the true ligand-binding site would exhibit stronger affinity to the compounds in the random library than the other sites, even if the random library did not include the ligand corresponding to the true binding site. We also assumed that the affinity of the true ligand-binding site would be correlated to the docking scores of the compounds in the random library, if the ligand-binding site was correctly predicted. We call this method the molecular-docking binding-site finding (MolSite) method. The MolSite method was applied to 89 known protein-ligand complex structures extracted from the Protein Data Bank, and it predicted the correct binding sites with about 80-99% accuracy, when only the single top-ranked site was adopted. In addition, the average docking score was weakly correlated to the experimental protein-ligand binding free energy, with a correlation coefficient of 0.44. 相似文献
10.
We present version 3.0 of our publicly available protein-protein docking benchmark. This update includes 40 new test cases, representing a 48% increase from Benchmark 2.0. For all of the new cases, the crystal structures of both binding partners are available. As with Benchmark 2.0, Structural Classification of Proteins (Murzin et al., J Mol Biol 1995;247:536-540) was used to remove redundant test cases. The 124 unbound-unbound test cases in Benchmark 3.0 are classified into 88 rigid-body cases, 19 medium-difficulty cases, and 17 difficult cases, based on the degree of conformational change at the interface upon complex formation. In addition to providing the community with more test cases for evaluating docking methods, the expansion of Benchmark 3.0 will facilitate the development of new algorithms that require a large number of training examples. Benchmark 3.0 is available to the public at http://zlab.bu.edu/benchmark. 相似文献
11.
Systematic protein-protein docking methods need to evaluate a huge number of different probe configurations, thus leading to high computational cost. We present an efficient filter-ray casting filter (RCF)-that enables a notable speed-up of systematic protein-protein docking. The high efficiency of RCF is the outcome of the following factors: (i) extracting of pockets and protrusions on the surfaces of the proteins using visibilities; (ii) a ray casting method that finds aligned receptor pocket/probe protrusion pairs without explicit similarity computations. The RCF method enables the integration of systematic methods and local shape feature matching methods. To verify the efficiency and the accuracy of RCF, we integrated it with a systematic protein-protein docking approach (ATTRACT) based on a reduced protein representation. The test results show that the integrated docking approach is much faster. At the same time, it ranks the lowest ligand root-mean-square deviation (RMSD) (L_rms) solutions higher when docking enzyme-enzyme inhibitor complexes. Consequently, RCF not only enables much faster execution of systematic docking runs but also improves the qualities of docking predictions. 相似文献
12.
We describe an efficient method for partial complementary shape matching for use in rigid protein-protein docking. The local shape features of a protein are represented using boolean data structures called Context Shapes. The relative orientations of the receptor and ligand surfaces are searched using precalculated lookup tables. Energetic quantities are derived from shape complementarity and buried surface area computations, using efficient boolean operations. Preliminary results indicate that our context shapes approach outperforms state-of-the-art geometric shape-based rigid-docking algorithms. 相似文献
13.
The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes 总被引:6,自引:0,他引:6
M E Noble R K Wierenga A M Lambeir F R Opperdoes A M Thunnissen K H Kalk H Groendijk W G Hol 《Proteins》1991,10(1):50-69
Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), and a compound structurally related to both (3-phosphoglycerate to 2.2 A). The active site structures of these complexes were compared with each other, and with two previously determined structures of triosephosphate isomerase either free from inhibitor or complexed with sulfate. The comparison reveals three conformations available to the "flexible loop" near the active site of triosephosphate isomerase: open (no ligand), almost closed (sulfate), and fully closed (phosphate/phosphonate complexes). Also seen to be sensitive to the nature of the active site ligand is the catalytic residue Glu-167. The side chain of this residue occupies one of two discrete conformations in each of the structures so far observed. A "swung out" conformation unsuitable for catalysis is observed when sulfate, 3-phosphoglycerate, or no ligand is bound, while a "swung in" conformation ideal for catalysis is observed in the complexes with glycerol-3-phosphate or 3-phosphonopropionate. The water structure of the active site is different in all five structures. The results are discussed with respect to the triosephosphate isomerase structure function relationship, and with respect to an on-going drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei. 相似文献
14.
Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s) upon binding. The major challenge is to define scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and \"misdocked\" conformations. Using a linear programming technique, we derived protein docking potentials (PDPs) that comply with this requirement. We considered a set of 63 nonredundant complexes to this aim, and generated 400,000 putative docked complexes (decoys) based on shape complementarity criterion for each complex. The PDPs were required to yield for the native (correctly docked) structure a potential energy lower than those of all the nonnative (misdocked) structures. The energy constraints applied to all complexes led to ca. 25 million inequalities, the simultaneous solution of which yielded an optimal set of PDPs that discriminated the correctly docked (up to 4.0 A root-mean-square deviation from known complex structure) structure among the 85 top-ranking (0.02%) decoys in 59/63 examined bound-bound cases. The high performance of the potentials was further verified in jackknife tests and by ranking putative docked conformation submitted to CAPRI. In addition to their utility in identifying correctly folded complexes, the PDPs reveal biologically meaningful features that distinguish docking potentials from folding potentials. 相似文献
15.
Computational mapping methods place molecular probes (small molecules or functional groups) on a protein surface to identify the most favorable binding positions by calculating an interaction potential. We have developed a novel computational mapping program called CS-Map (computational solvent mapping of proteins), which differs from earlier mapping methods in three respects: (i) it initially moves the ligands on the protein surface toward regions with favorable electrostatics and desolvation, (ii) the final scoring potential accounts for desolvation, and (iii) the docked ligand positions are clustered, and the clusters are ranked on the basis of their average free energies. To understand the relative importance of these factors, we developed alternative algorithms that use the DOCK and GRAMM programs for the initial search. Because of the availability of experimental solvent mapping data, lysozyme and thermolysin are considered as test proteins. Both DOCK and GRAMM speed up the initial search, and the combined algorithms yield acceptable mapping results. However, the DOCK-based approaches place the consensus site farther from its experimentally determined position than CS-Map, primarily because of the lack of a solvation term in the initial search. The GRAMM-based program also finds the correct consensus site for thermolysin. We conclude that good sampling is the most important requirement for successful mapping, but accounting for desolvation and clustering of ligand positions also help to reduce the number of false positives. 相似文献
16.
17.
Ferredoxin (Fd) interacts with ferredoxin-NADP(+) reductase (FNR) to transfer two electrons to the latter, one by one, which will finally be used to reduce NADP(+) to NADPH. The formation of a transient complex between Fd and FNR is required for the electron transfer (ET), and extensive mutational and crystallographic studies have been reported to characterize such protein-protein interaction. However, some aspects of the association mechanism still remain unclear. Moreover, in spite of their structural differences, flavodoxin (Fld) can replace Fd in its function and interact with FNR to transfer electrons with only slightly lower efficiency. Although crystallographic structures for the FNR:Fd association have been reported, experimental structural data for the FNR:Fld interaction are highly elusive. We have modeled here the interactions between FNR and both of its protein partners, Fd and Fld, using surface energy analysis, computational rigid-body docking simulations, and interface side-chain refinement. The results, consistent with previous experimental data, suggest the existence of alternative binding modes in these ET proteins. 相似文献
18.
Aldose reductase is a promising target for the treatment of diabetic complications, and as such, has become the focus of various drug design projects. As revealed by a survey of available crystal structures, the protein shows pronounced induced-fit effects upon ligand binding. Although helping to explain the enzyme's substrate promiscuity, phenomena of this kind are still responsible for significant complications in structure-based design efforts directed to aldose reductase. Accordingly, a deeper understanding of the principles governing conformational alterations in this enzyme would be of utmost practical importance. As a first step in addressing this issue, molecular dynamics (MD) simulations have been carried out. The ultrahigh resolution crystal structure of aldose reductase complexed with inhibitor IDD594 served as ideal starting point for a set of different simulations of nanosecond time scale: the native complexed state with bound inhibitor, the uncomplexed state (after removal of the inhibitor) at standard temperature, and the uncomplexed state at elevated temperature. The reference simulation of the complex exhibits extraordinary stability of the overall fold, whereas two distinct conformational substates are found for the binding-site region. In contrast, already at standard temperature pronounced changes are observed in the binding region during the simulation of the uncomplexed state. Leu300, for example, closes the access to the pocket opened by IDD594. On the other hand, conformations around the catalytic site are highly conserved, with the His110-Tyr48-NADP+ orientation being stabilized by a water molecule. Detailed analysis of the trajectories allows to reveal a set of distinct conformational substates that may prove useful as alternative structural templates in virtual screening for new aldose reductase inhibitors. 相似文献
19.
Virtual drug screening using protein-ligand docking techniques is a time-consuming process, which requires high computational power for binding affinity calculation. There are millions of chemical compounds available for docking. Eliminating compounds that are unlikely to exhibit high binding affinity from the screening set should speed-up the virtual drug screening procedure. We performed docking of 6353 ligands against twenty-one protein X-ray crystal structures. The docked ligands were ranked according to their calculated binding affinities, from which the top five hundred and the bottom five hundred were selected. We found that the volume and number of rotatable bonds of the top five hundred docked ligands are similar to those found in the crystal structures and corresponded with the volume of the binding sites. In contrast, the bottom five hundred set contains ligands that are either too large to enter the binding site, or too small to bind with high specificity and affinity to the binding site. A pre-docking filter that takes into account shapes and volumes of the binding sites as well as ligand volumes and flexibilities can filter out low binding affinity ligands from the screening sets. Thus, the virtual drug screening procedure speed is increased. 相似文献
20.
Understanding the ruling principles whereby protein receptors recognize, interact, and associate with molecular substrates and inhibitors is of paramount importance in drug discovery efforts. Protein-ligand docking aims to predict and rank the structure(s) arising from the association between a given ligand and a target protein of known 3D structure. Despite the breathtaking advances in the field over the last decades and the widespread application of docking methods, several downsides still exist. In particular, protein flexibility-a critical aspect for a thorough understanding of the principles that guide ligand binding in proteins-is a major hurdle in current protein-ligand docking efforts that needs to be more efficiently accounted for. In this review the key concepts of protein-ligand docking methods are outlined, with major emphasis being given to the general strengths and weaknesses that presently characterize this methodology. Despite the size of the field, the principal types of search algorithms and scoring functions are reviewed and the most popular docking tools are briefly depicted. Recent advances that aim to address some of the traditional limitations associated with molecular docking are also described. A selection of hand-picked examples is used to illustrate these features. 相似文献