首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim HJ  Kim HM  Kim CS  Jeong CS  Choi HS  Kawada T  Kim BS  Yu R 《FEBS letters》2011,585(14):2285-2290
HVEM is a member of the TNF receptor superfamily that plays a role in the development of various inflammatory diseases. In this study, we show that HVEM deficiency attenuates adipose tissue inflammatory responses and glucose intolerance in diet-induced obesity. Feeding a high-fat diet (HFD) to HVEM-deficient mice elicited a reduction in the number of macrophages and T cells infiltrated into adipose tissue. Proinflammatory cytokine levels in the adipose tissue decreased in HFD-fed HVEM-deficient mice, while levels of the anti-inflammatory cytokine IL-10 increased. Moreover, glucose intolerance and insulin sensitivity were markedly improved in the HFD-fed HVEM-deficient mice. These findings indicate that HVEM may be a useful target for combating obesity-induced inflammatory responses and insulin resistance.  相似文献   

2.
Excess visceral adiposity may predispose to chronic diseases like hypertension and type 2 diabetes with a high risk for coronary artery disease. Adipose tissue secreted cytokines and oxidative stress play an important role in chronic disease progression. To combat adiposity, plant-derived triterpenes are currently receiving much attention as they possess antioxidant and anti-inflammatory properties and the ability to regulate glucose and lipid metabolism. In the search for potential antiobese compounds from natural sources, this study evaluated the effects of oleanolic acid (OA), a pentacyclic triterpene commonly present in fruits and vegetables, in glucose tolerance test and on high-fat diet (HFD)-induced obesity in mice. Adult male Swiss mice treated or not with OA (10 mg/kg) were fed a HFD during 15 weeks. Sibutramine (SIB) treated group (10 mg/kg) was included for comparison. Weekly body weights, food and water consumption were measured, and at the end of study period, the levels of blood glucose and lipids, plasma hormone levels of insulin, ghrelin and leptin, and the visceral abdominal fat content were analysed. Mice treated with OA and fed a HFD showed significantly (p < 0.05) improved glucose tolerance, decreased body weights, visceral adiposity, blood glucose, plasma lipids relative to their respective controls fed no OA. Additionally, OA treatment, while significantly elevating the plasma hormone level of leptin, decreased the level of ghrelin. However, it caused a greater decrease in plasma amylase activity than lipase. Sibutramine-treated group also manifested similar effects like OA except for blood glucose level that was not different from HFD control. These findings suggest that OA ameliorates visceral adiposity and improves glucose tolerance in mice and thus has an antiobese potential through modulation of carbohydrate and fat metabolism.  相似文献   

3.
Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage.  相似文献   

4.
To investigate the influence of diet on serum protein pattern, mice were fed for 8 weeks either control chow or a high-fat diet (containing 21 % w/w milk fat and 0.2 % w/w cholesterol); sera were collected and analyzed by 2-DE. The main positive acute-phase reactant proteins, haptoglobin and hemopexin, were significantly up-regulated in animals receiving the high-fat diet. Data on all other proteins also pointed to an inflammatory condition in these animals. The largest change in concentration was observed for carboxylesterase N, a circulating enzyme seldom connected with lipid metabolism in earlier reports. These observations agree with the notion of a link between diet-induced hyperlipidemia and the inflammatory component of its cardiovascular sequels in humans, but the effects in the experimental animals are massive and obviously affect most of the major serum proteins.  相似文献   

5.
Agonism of peroxisome proliferator-activated receptor (PPAR) alpha, a key regulator of lipid metabolism, leads to amelioration of lipid abnormalities in dyslipidemic patients. However, whether PPARalpha agonism is an effective form of therapy for obesity-related insulin resistance associated with lipid abnormalities is unclear. The present study investigated the effects of a potent and subtype-selective PPARalpha agonist, KRP-101, in a nonrodent insulin-resistant animal model under pair-fed conditions. Beagle dogs were fed a high-fat diet for 24 wk to induce insulin resistance. During the final 12 wk, 0.03 mg x kg(-1) x day(-1) KRP-101 (n = 5) or vehicle (n = 5) was administered orally once a day. KRP-101 administration resulted in a significantly lower weight of overall visceral fat, which is associated with increased adiponectin and decreased leptin in serum. KRP-101 administration improved hyperglycemia and hyperinsulinemia as well as dyslipidemia in dogs fed a high-fat diet. Oral glucose tolerance test showed that KRP-101 administration improved glucose intolerance. The KRP-101 group showed a markedly lower hepatic triglyceride concentration. Lipid oxidation was increased in the liver and skeletal muscles of the KRP-101 group. These findings in the dog model suggest that the use of potent and subtype-selective PPARalpha agonists as a potentially relevant therapeutic approach to treat human insulin resistance associated with visceral obesity.  相似文献   

6.
Effects of astaxanthin in obese mice fed a high-fat diet   总被引:2,自引:0,他引:2  
Astaxanthin is a natural antioxidant carotenoid that occurs in a wide variety of living organisms. We investigated the effects of astaxanthin supplementation in obese mice fed a high-fat diet. Astaxanthin inhibited the increases in body weight and weight of adipose tissue that result from feeding a high-fat diet. In addition, astaxanthin reduced liver weight, liver triglyceride, plasma triglyceride, and total cholesterol. These results suggest that astaxanthin might be of value in reducing the likelihood of obesity and metabolic syndrome in affluent societies.  相似文献   

7.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor gamma2 (PPARgamma2), and CCAT/enhancer-binding protein alpha (C/EBPalpha). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARgamma2, and C/EBPalpha in the visceral fat tissue of mice.  相似文献   

8.
The present study was aimed at studying energy balance in mice fed a high-fat diet. Albino mice were divided into three groups. One group had free access to the stock diet, whereas the two other groups consumed a high-fat diet. One of the high-fat fed groups was fed ad libitum, whereas the other was offered a restricted amount of the same diet so that its energy intake was comparable to the group of mice given the stock diet. Energy balance measurements, which included indirect calorimetry and carcass analysis, were performed. Brown adipose tissue (BAT) properties were also investigated. The results show that gains in both body weight and fat were higher in mice that had free access to high-fat diet than in mice fed the stock diet. In animals given a restricted amount of the high-fat diet, fat gain increased, whereas protein gain was reduced in comparison with animals fed the stock diet. Unrestricted access to the high-fat diet led to an increase in both energy intake and energy gain. As revealed by both slaughter and indirect calorimetry techniques energy expenditure was, in high-fat fed mice, 40% higher than in animals fed either stock or a restricted amount of high-fat diet. Nadolol was shown to suppress a large part of the elevated metabolic rate seen in mice fed an unrestricted high-fat diet. In those mice, BAT mitochondrial GDP binding was also increased. In summary, the present results confirm that adaptive diet-induced thermogenesis (DIT) develops in mice made hyperphagic by an energy-dense palatable diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effects of fenugreek seed extract in obese mice fed a high-fat diet   总被引:1,自引:0,他引:1  
It was found that fenugreek seed extract reduced the body weight gain induced by a high-fat diet in obese mice. The extract decreased plasma triglyceride gain induced by oil administration. The major component of the extract, 4-hydroxyisoleucine, also decreased plasma triglyceride gain. Consequently, fenugreek seed extract is expected to prevent the obesity induced by a high-fat diet.  相似文献   

10.
Systemic inflammation is strongly involved in the pathophysiology of the metabolic syndrome, a cluster of metabolic risk factors that includes hypertriglyceridemia. Aspirin treatment lowers inflammation via inhibition of NF-κB activity but also reduces hypertriglyceridemia in humans. The aim of this study was to investigate the mechanism by which aspirin improves hypertriglyceridemia. Human apolipoprotein CI (apoCI)-expressing mice (APOC1 mice), an animal model with elevated plasma triglyceride (TG) levels, as well as normolipidemic wild-type (WT) mice were fed a high-fat diet (HFD) and treated with aspirin. Aspirin treatment reduced hepatic NF-κB activity in HFD-fed APOC1 and WT mice, and in addition, aspirin decreased plasma TG levels (-32%, P < 0.05) in hypertriglyceridemic APOC1 mice. This TG-lowering effect could not be explained by enhanced VLDL-TG clearance, but aspirin selectively reduced hepatic production of VLDL-TG in both APOC1 (-28%, P < 0.05) and WT mice (-33%, P < 0.05) without affecting VLDL-apoB production. Aspirin did not alter hepatic expression of genes involved in FA oxidation, lipogenesis, and VLDL production but decreased the incorporation of plasma-derived FA by the liver into VLDL-TG (-24%, P < 0.05), which was independent of hepatic expression of genes involved in FA uptake and transport. We conclude that aspirin improves hypertriglyceridemia by decreasing VLDL-TG production without affecting VLDL particle production. Therefore, the inhibition of inflammatory pathways by aspirin could be an interesting target for the treatment of hypertriglyceridemia.  相似文献   

11.
The consumption of a high-fat diet modifies both the morphology of the small intestine and experimentally tested effects of schistosomiasis mansoni. However, whether a schistosomiasis infection associated with a high-fat diet causes injury to the small intestine has never been investigated. Mice were fed either a high-fat or a standard-fat diet for 6 months and were then infected with Schistosoma mansoni cercariae. Physical characteristics of the intestinal tissue (mucosal thickness, small intestinal villi length and height, and abundance of goblet cells and enterocytes on the villous surface) and the distribution of granulomas along the intestinal segments and their developmental stage were measured at the time of sacrifice (9 or 17 weeks post-infection). The group fed a high-fat diet exhibited different granuloma stages, whereas the control group possessed only exudative granulomas. The chronically infected mice fed a high-fat diet exhibited higher granuloma and egg numbers than the acutely infected group. Exudative, exudative/exudative-productive and exudative-productive granulomas were present irrespective of diet. Computer-aided morphometric analysis confirmed that villus length, villus width, muscular height and submucosal height of the duodenal and jejunal segments were affected by diet and infection. In conclusion, a high-fat diet and infection had a significant impact on the small intestine morphology and morphometry among the animals tested.  相似文献   

12.
Recent studies indicate an accelerated progression of nonalcoholic steatohepatitis (NASH) in postmenopausal women. Hypercholesterolemia, an important risk factor for NASH progression, is often observed after menopause. This study examined the effects of estrogen on NASH in ovariectomized (OVX) mice fed a high-fat and high-cholesterol (HFHC) diet. To investigate the effects of estrogen deficiency, OVX mice and sham-operated (SO) mice were fed normal chow or HFHC diet for 6 wk. Next, to investigate the effects of exogenous estrogen replenishment, OVX mice fed with HFHC diet were treated with implanted hormone release pellets (containing 17β-estradiol or placebo vehicle) for 6 wk. OVX mice on the HFHC diet showed enhanced liver injury with increased liver macrophage infiltration and elevated serum cholesterol levels compared with SO-HFHC mice. Hepatocyte monocyte chemoattractant protein-1 (MCP1) protein expression in OVX-HFHC mice was also enhanced compared with SO-HFHC mice. In addition, hepatic inflammatory gene expressions, including monocytes chemokine (C-C motif) receptor 2 (CCR2), were significantly elevated in OVX-HFHC mice. Estrogen treatment improved serum cholesterol levels, liver injury, macrophage infiltration, and inflammatory gene expressions in OVX-HFHC mice. Moreover, the elevated expression of liver CCR2 and MCP1 were decreased by estrogen treatment in OVX-HFHC mice, whereas low-density lipoprotein dose dependently enhanced CCR2 expression in THP1 monocytes. Our study demonstrated that estrogen deficiency accelerated NASH progression in OVX mice fed HFHC diet and that this effect was improved by estrogen therapy. Hypercholesterolemia in postmenopausal women would be a potential risk factor for NASH progression.  相似文献   

13.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.  相似文献   

14.
Green tea (GT) is a widely consumed beverage with health benefits, including antiobesity effects; however, the efficacy of GT on lipid levels associated with obesity is not clearly understood. Here, we examined the impact of GT consumption on lipid metabolism in the livers of high-fat diet (HFD)-induced obese mice. We performed lipid profiling using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry in C57BL/6J mice fed a normal diet (ND), HFD and HFD with GT for 12 weeks. The partial least squares discriminant analysis score plot showed a difference among the groups and revealed that the levels of several lipid metabolites were altered in mice fed HFD with GT. The decreased levels of lysophospholipids (LPLs), such as lysophosphatidylcholine, lysophosphatidylethanolamine and lysophosphatidylserine, in HFD mice compared to those of the ND group were recovered by supplementation of GT. In agreement with these lipid metabolites changes, hepatic lysophosphatidylcholine acyltransferase 2/4 was significantly increased in HFD mice. This study showed abnormal changes in lipid species associated with obesity, and these levels were attenuated by GT intake, suggesting a relationship between the reduction of hepatic LPL levels and inflammation in obesity.  相似文献   

15.
16.
Maternal overnutrition is associated with increased risk of metabolic disorders in the offspring. This study tested the hypothesis that maternal green tea (GT) supplementation can alleviate metabolic derangements in high-fat-diet-fed rats born of obese dams. Female Sprague–Dawley rats were fed low-fat (LF, 7%), high-fat (HF, 30%) or HF diet containing 0.75% or 1.0% GT extract (GT1, GT2) prior to conception and throughout gestation and lactation. Both doses of GT significantly improved metabolic parameters of HF-fed lactating dams (P<.05). Birth weight and litter size of offspring from HF dams were similar, but GT supplementation led to lighter pups on day 21 (P<.05). The weaned male pups received HF, GT1 or GT2 diet (dam/pup diet groups: LF/HF, HF/HF, HF/GT1, HF/GT2, GT1/HF and GT2/HF). At week 13, they had similar weight but insulin resistance index (IRI), serum nonesterified fatty acid (NEFA) and liver triglyceride of rats born to GT dams were 57%, 23% and 26% lower, accompanied by improved gene/protein expressions related to lipid and glucose metabolism, compared with the HF/HF rats (P<.05). Although HF/GT1 and HF/GT2 rats had lower serum NEFA, their insulin and IRI were comparable to HF/HF rats. This study shows that metabolic derangements induced by an overnourished mother could be offset by supplementing GT to the maternal diet and that this approach is more effective than giving GT to offspring since weaning. Hence, adverse effects of developmental programming are reversible, at least in part, by supplementing bioactive food component(s) to the mother's diet.  相似文献   

17.
We have previously demonstrated that coffee and caffeine ameliorated hyperglycemia in spontaneously diabetic KK-A(y) mice. This present study evaluates the antidiabetic effects of coffee and caffeine on high-fat-diet-induced impaired glucose tolerance in C57BL/6J mice. C57BL/6J mice fed a high-fat diet were given regular drinking water (control group), or a 2.5-fold-diluted coffee or caffeine solution (200 mg/L) for 17 weeks. The ingestion of coffee or caffeine improved glucose tolerance, insulin sensitivity, and hyperinsulinemia when compared with mice in the control group. The adipose tissue mRNA levels of inflammatory adipocytokines (MCP-1 and IL-6) and the liver mRNA levels of genes related to fatty acid synthesis were lower in the coffee and caffeine groups than those in the control group. These results suggest that coffee and caffeine exerted an ameliorative effect on high-fat-diet-induced impaired glucose tolerance by improving insulin sensitivity. This effect might be attributable in part to the reduction of inflammatory adipocytokine expression.  相似文献   

18.
The effects of adrenaline (0.5 microM) and the combination of adrenaline and insulin (1.7nM) on [6-14C]glucose metabolism were assessed in epididymal fat-pads from rats fed either a low- or high-fat diet. The response of lipolysis to adrenaline was clearly diminished in fat-fed rats. Insulin added to adrenaline inhibited the lipolysis by 50% regardless of the diet. Glucose utilization in adipose tissue of fat-fed rats was markedly stimulated by adrenaline (glucose uptake was increased 3-fold and the production of CO2 and the glycerol moiety of acylglycerol was increased 4-fold). However, adipose tissue from fat-fed rats was resistant to the effect of insulin to produce a further increase in adrenaline-stimulated glucose uptake. The intracellular capacity of lipogenesis on the one hand, and the production of CO2 and the glycerol moiety of acylglycerol on the other, are of prime importance in the action of insulin and adrenaline on glucose utilization in this model.  相似文献   

19.
While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.  相似文献   

20.
Objective: In mice, endocannabinoids (ECs) modulate insulin release from pancreatic β‐cells and adipokine expression in adipocytes through cannabinoid receptors. Their pancreatic and adipose tissue levels are elevated during hyperglycemia and obesity, but the mechanisms underlying these alterations are not understood. Methods and Procedures: We assessed in mice fed for up to 14 weeks with a standard or high‐fat diet (HFD): (i) the expression of cannabinoid receptors and EC biosynthesizing enzymes (N‐acyl‐phosphatidyl‐ethanolamine‐selective phospholipase D (NAPE‐PLD) and DAGLα) and degrading enzymes (fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)) in pancreatic and adipose tissue sections by immunohistochemical staining; (ii) the amounts, measured by liquid chromatography–mass spectrometry, of the ECs, 2‐AG, and anandamide (AEA). Results: Although CB1 receptors and biosynthetic enzymes were found mostly in α‐cells, degrading enzymes were identified in β‐cells. Following HFD, staining for biosynthetic enzymes in β‐cells and lower staining for FAAH were observed together with an increase of EC pancreatic levels. While we observed no diet‐induced change in the intensity of the staining of EC metabolic enzymes in the mesenteric visceral fat, a decrease in EC concentrations was accompanied by lower and higher staining of biosynthesizing enzymes and FAAH, respectively, in the subcutaneous fat. No change in cannabinoid receptor staining was observed following HFD in any of the analyzed tissues. Discussion: We provide unprecedented information on the distribution of EC metabolic enzymes in the pancreas and adipose organ, where their aberrant expression during hyperglycemia and obesity contribute to dysregulated EC levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号