共查询到20条相似文献,搜索用时 0 毫秒
1.
Marco Salomone-Stagni Francesco Musiani Stefano Benini 《Acta Crystallographica. Section F, Structural Biology Communications》2016,72(12):903-910
AmsI is a low‐molecular‐weight protein tyrosine phosphatase that regulates the production of amylovoran in the Gram‐negative bacterium Erwinia amylovora, a specific pathogen of rosaceous plants such as apple, pear and quince. Amylovoran is an exopolysaccharide that is necessary for successful infection. In order to shed light on AmsI, its structure was solved at 1.57 Å resolution at the same pH as its highest measured activity (pH 5.5). In the active site, a water molecule, bridging between the catalytic Arg15 and the reaction‐product analogue sulfate, might be representative of the water molecule attacking the phospho‐cysteine intermediate in the second step of the reaction mechanism. 相似文献
2.
Gustafson CL Stauffacher CV Hallenga K Van Etten RL 《Protein science : a publication of the Protein Society》2005,14(10):2515-2525
Eukaryotic low-molecular-weight protein tyrosine phosphatases (LMW PTPs) contain a conserved serine, a histidine with an elevated pKa, and an active site asparagine that together form a highly conserved hydrogen bonding network. This network stabilizes the active site phosphate binding loop for optimal substrate binding and catalysis. In the phosphatase from the bovine parasite Tritrichomonas foetus (TPTP), both the conserved serine (S37) and asparagine (N14) are present, but the conserved histidine has been replaced by a glutamine residue (Q67). Site-directed mutagenesis, kinetic, and spectroscopic experiments suggest that Q67 is located near the active site and is important for optimal catalytic activity. Kinetic experiments also suggest that S37 participates in the active site/hydrogen bonding network. Nuclear magnetic resonance spectroscopy was used to determine the three-dimensional structure of the TPTP enzyme and to further examine the roles of S37 and Q67. The backbone conformation of the TPTP phosphate binding loop is nearly superimposable with that of other tyrosine phosphatases, with N14 existing in a strained, left-handed conformation that is a hallmark of the active site hydrogen bonding network in the LMW PTPs. As expected, both S37 and Q67 are located at the active site, but in the consensus structure they are not within hydrogen bonding distance of N14. The hydrogen bond interactions that are observed in X-ray structures of LMW PTPs may in fact be transient in solution. Protein dynamics within the active site hydrogen bonding network appear to be affected by the presence of substrate or bound inhibitors such as inorganic phosphate. 相似文献
3.
Zhang X Li T Zhang J Li D Guo Y Qin G Zhu KY Ma E Zhang J 《Archives of insect biochemistry and physiology》2012,80(2):77-91
Glutathione S-transferases (GSTs) are an important family of detoxifying enzymes and play a key role in pesticide resistance in the insect. Tyrosine is essential for its detoxification function. In the present study, two conserved tyrosine residues are located at positions 108 and 116 in H-site of LmGSTD1. To elucidate how the two residues participate in the catalytic process and keeping structural stability, four mutants, Y108A, Y108E, Y116A, and Y116E, were generated. It was found that the four mutants affected the specific activity of LmGSTD1 in various degrees, depending on the types of substrate and reaction mechanism. Steady-state kinetics assay revealed that Y108E and Y116E had a significant influence on GSH-binding ability, which indicates the two tyrosine residues of H-site contribute to topology rearrangement of G-site. Both Y116A and Y116E exhibited lower CDNB-binding affinity, suggesting that Y116 takes part in hydrophobic substrate binding. The thermostability assay, intrinsic, and 8-anilino-1-naphthalenesulfonic acid (ANS) florescence results showed that the two tyrosine residues were involved in regulation of active-site conformation. Finally, homology modeling provided evidence that the two tyrosines in H-site participate in hydrophobic substrate binding. Furthermore, Y108 is closer to the S atom of S-hexylglutathione. In conclusion, the two tyrosines in LmGSTD1 are important residues in both the catalytic process and protein stability. 相似文献
4.
《Acta Crystallographica. Section D, Structural Biology》2018,74(10):1015-1026
Here, new crystal structures are presented of the isolated membrane‐proximal D1 and distal D2 domains of protein tyrosine phosphatase epsilon (PTPϵ), a protein tyrosine phosphatase that has been shown to play a positive role in the survival of human breast cancer cells. A triple mutant of the PTPϵ D2 domain (A455N/V457Y/E597D) was also constructed to reconstitute the residues of the PTPϵ D1 catalytic domain that are important for phosphatase activity, resulting in only a slight increase in the phosphatase activity compared with the native D2 protein. The structures reported here are of sufficient resolution for structure‐based drug design, and a microarray‐based assay for high‐throughput screening to identify small‐molecule inhibitors of the PTPϵ D1 domain is also described. 相似文献
5.
Multiple phases have been observed during the folding and unfolding of intestinal fatty acid binding protein (WT-IFABP) by stopped-flow fluorescence. Site-directed mutagenesis has been used to examine the role of each of the two tryptophans of this protein in these processes. The unfolding and refolding kinetics of the mutant protein containing only tryptophan 82 (W6Y-IFABP) showed that the tryptophan at this location was critical to the fluorescence signal changes observed throughout the unfolding reaction and early in the refolding reaction. However, the kinetic patterns of the mutant protein containing only tryptophan 6 (W82Y-IFABP) indicated that the tryptophan at this location participated in the fluorescence signal changes observed early in the unfolding reaction and late in the refolding reaction. Together, these data suggest that native-like structure was formed first in the vicinity of tryptophan 82, near the center of the hydrophobic core of this beta-sheet protein, prior to formation of native-like structure in the periphery of the protein. 相似文献
6.
结核分枝杆菌感染引起的结核病疫情依然严峻。感染的结核菌可分泌一系列效应分子调控、干扰和逃逸宿主免疫。本文综述蛋白酪氨酸磷酸酶PtpA在结核菌感染中发挥的重要作用:经多条途径抑制宿主天然免疫、细胞凋亡及吞噬体-溶酶体融合、调控宿主能量代谢等逃逸免疫杀伤。作为候选药物靶标,靶向PtpA的抑制剂设计、筛选及药物研发较为迟缓,因为PtpA与宿主蛋白酪氨酸磷酸酶hLMW-PTP具有较高一致性。为了进一步探索靶向该分子的更佳途径,分析了ptpA基因转录及PtpA蛋白分泌方面的研究进展及存在问题,为靶向PtpA的其他途径提供参考。 相似文献
7.
Guangmei Huang Michael R. Oliver Jeremy R. Keown David C. Goldstone Peter Metcalf 《Acta Crystallographica. Section F, Structural Biology Communications》2019,75(4):233-238
Many viral genomes encode kinase and phosphatase enzymes to manipulate pathways that are controlled by phosphorylation events. The majority of viral phosphatase genes occur in the Baculoviridae and Poxviridae families of large DNA viruses. The corresponding protein sequences belong to four major homology groups, and structures are currently available for only two of these. Here, the first structure from the third group, the protein tyrosine phosphatase‐2 (PTP‐2) class of viral phosphatases, is described. It is shown that Cydia pomonella granulovirus PTP‐2 has the same general fold and active‐site architecture as described previously for other phosphatases, in the absence of significant sequence homology. Additionally, it has a novel C‐terminal extension in an area corresponding to the interface of dimeric poxvirus phosphatases belonging to the Tyr–Ser protein phosphatase homology group. 相似文献
8.
Tolkatchev D Shaykhutdinov R Xu P Plamondon J Watson DC Young NM Ni F 《Protein science : a publication of the Protein Society》2006,15(10):2381-2394
A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP. 相似文献
9.
Anja K. Pedersen Günther H. Peters Karin B. Mller Lars F. Iversen Jette S. Kastrup 《Acta Crystallographica. Section D, Structural Biology》2004,60(9):1527-1534
Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including the conformation and flexibility of active‐site residues as well as the water‐molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure‐based drug design. A 1.95 Å apo PTP1B structure has been obtained, showing four highly coordinated water molecules in the active‐site pocket of the enzyme; hence, the active site is highly solvated in the apo state. Three of the water molecules are located at positions that approximately correspond to the positions of the phosphate O atoms of the natural substrate phosphotyrosine and form a similar network of hydrogen bonds. The active‐site WPD‐loop was found to be in the closed conformation, in contrast to previous observations of wild‐type PTPs in the apo state, in which the WPD‐loop is open. The closed conformation is stabilized by a network of hydrogen bonds. These results provide new insights into and understanding of the active site of PTP1B and form a novel basis for structure‐based inhibitor design. 相似文献
10.
A. Ghelfi S.A. Gaziola M.C. Cia S.M. Chabregas M.C. Falco P.R. Kuser‐Falcão R.A. Azevedo 《The Annals of applied biology》2011,159(2):267-280
Sugarcane yield and quality are affected by a number of biotic and abiotic stresses. In response to such stresses, plants may increase the activities of some enzymes such as glutathione transferase (GST), which are involved in the detoxification of xenobiotics. Thus, a sugarcane GST was modelled and molecular docked using the program LIGIN to investigate the contributions of the active site residues towards the binding of reduced glutathione (GSH) and 1‐chloro‐2,4‐dinitrobenzene (CDNB). As a result, W13 and I119 were identified as key residues for the specificity of sugarcane GSTF1 (SoGSTF1) towards CDNB. To obtain a better understanding of the catalytic specificity of sugarcane GST (SoGSTF1), two mutants were designed, W13L and I119F. Tertiary structure models and the same docking procedure were performed to explain the interactions between sugarcane GSTs with GSH and CDNB. An electron‐sharing network for GSH interaction was also proposed. The SoGSTF1 and the mutated gene constructions were cloned and expressed in Escherichia coli and the expressed protein purified. Kinetic analyses revealed different Km values not only for CDNB, but also for GSH. The Km values were 0.2, 1.3 and 0.3 mM for GSH, and 0.9, 1.2 and 0.5 mM for CDNB, for the wild type, W13L mutant and I119F mutant, respectively. The Vmax values were 297.6, 224.5 and 171.8 µmol min?1 mg?1 protein for GSH, and 372.3, 170.6 and 160.4 µmol min?1 mg?1 protein for CDNB. 相似文献
11.
Debajyoti Dutta Sudipta Bhattacharyya Amit Kumar Das 《Acta Crystallographica. Section F, Structural Biology Communications》2012,68(7):786-789
FabG4 from Mycobacterium tuberculosis belongs to the high molecular weight ketoacyl reductases (HMwFabGs). The enzyme requires NADH for β‐ketoacyl reductase activity. The protein was overexpressed, purified to homogeneity and crystallized as a FabG4–NADH complex. A mountable FabG4:NADH complex crystal diffracted to 2.59 Å resolution and belonged to space group P1, with unit‐cell parameters a = 63.07, b = 71.03, c = 92.92 Å, α = 105.02, β = 97.06, γ = 93.66°. The Matthews coefficient suggested the presence of four monomers in the unit cell. In addition, a self‐rotation function revealed the presence of two twofold NCS axes and one fourfold NCS axis. At χ = 180° the highest peak corresponds to the twofold NCS between two monomers, whereas the second peak corresponds to the twofold NCS between two dimers. 相似文献
12.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
13.
Plant nonspecific lipid transfer protein 2 (nsLTP2) is a small (7 kDa) protein that binds lipid-like ligands. An inner hydrophobic cavity surrounded by alpha-helices is the defining structural feature of nsLTP2. Although nsLTP2 structures have been reported earlier, the detailed mechanisms of ligand binding and lipid transfer remain unclear. In this study, we used site-directed mutagenesis to determine the role of various hydrophobic residues (L8, I15, F36, F39, Y45, Y48, and V49) in the structure, stability, ligand binding, and lipid transfer activity of rice nsLTP2. Three single mutations (L8A, F36A, and V49A) drastically alter the native tertiary structure and perturb ligand binding and lipid transfer activity. Therefore, these three residues are structurally important. The Y45A mutant, however, retains a native-like structure but has decreased lipid binding affinity and lipid transfer activity, implying that this aromatic residue is critical for these biological functions. The mutants, I15A and Y48A, exhibit quite different ligand binding affinities. Y48 is involved in planar sterol binding but not linear lysophospholipid association. As for I15A, it had the highest dehydroergosterol binding affinity in spite of the lower lipid binding and transfer abilities. Our results suggest that the long alkyl side chain of I15 would restrict the flexibility of loop I (G13-A19) for sterol entry. Finally, F39A can markedly increase the exposed hydrophobic surface to maintain its transfer efficiency despite reduced ligand binding affinity. These findings suggest that the residues forming the hydrophobic cavity play various important roles in the structure and function of rice nsLTP2. 相似文献
14.
Hongyan Zheng Alina Beliavsky Anatoli Tchigvintsev Joseph S. Brunzelle Greg Brown Robert Flick Elena Evdokimova Zdzislaw Wawrzak Radhakrishnan Mahadevan Wayne F. Anderson Alexei Savchenko Alexander F. Yakunin 《Proteins》2013,81(6):1031-1041
Aldehyde dehydrogenases are found in all organisms and play an important role in the metabolic conversion and detoxification of endogenous and exogenous aldehydes. Genomes of many organisms including Escherichia coli and Salmonella typhimurium encode two succinate semialdehyde dehydrogenases with low sequence similarity and different cofactor preference (YneI and GabD). Here, we present the crystal structure and biochemical characterization of the NAD(P)+‐dependent succinate semialdehyde dehydrogenase YneI from S. typhimurium. This enzyme shows high activity and affinity toward succinate semialdehyde and exhibits substrate inhibition at concentrations of SSA higher than 0.1 mM. YneI can use both NAD+ and NADP+ as cofactors, although affinity to NAD+ is 10 times higher. High resolution crystal structures of YneI were solved in a free state (1.85 Å) and in complex with NAD+ (1.90 Å) revealing a two domain protein with the active site located in the interdomain interface. The NAD+ molecule is bound in the long channel with its nicotinamide ring positioned close to the side chain of the catalytic Cys268. Site‐directed mutagenesis demonstrated that this residue, as well as the conserved Trp136, Glu365, and Asp426 are important for activity of YneI, and that the conserved Lys160 contributes to the enzyme preference to NAD+. Our work has provided further insight into the molecular mechanisms of substrate selectivity and activity of succinate semialdehyde dehydrogenases. © 2012 Wiley Periodicals, Inc. 相似文献
15.
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not \"dominated\"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. 相似文献
16.
Despite the important role of the carboxyl‐terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1‐Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449–32465) to incorporate a complete CB1 Ct (Glu416Ct–Leu472Ct). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1‐Gi complex. The resulting models were consistent with the NMR‐determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site‐directed mutagenesis studies of Glu416Ct, Asp423Ct, Asp428Ct, and Arg444Ct of CB1 Ct suggested that the CB1 Ct can influence receptor‐G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. Proteins 2016; 84:532–543. © 2016 Wiley Periodicals, Inc. 相似文献
17.
Xie X Pashkov I Gao X Guerrero JL Yeates TO Tang Y 《Biotechnology and bioengineering》2009,102(1):20-28
Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed approximately 50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 h, which represents a significant improvement over the performance of wild-type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes. 相似文献
18.
Maria Nagy Hui‐Chuan Wu Zhonghua Liu Sabina Kedzierska‐Mieszkowska Michal Zolkiewski 《Protein science : a publication of the Protein Society》2009,18(2):287-293
Hexameric AAA+ ATPases induce conformational changes in a variety of macromolecules. AAA+ structures contain the nucleotide‐binding P‐loop with the Walker A sequence motif: GxxGxGK(T/S). A subfamily of AAA+ sequences contains Asn in the Walker A motif instead of Thr or Ser. This noncanonical subfamily includes torsinA, an ER protein linked to human dystonia and DnaC, a bacterial helicase loader. Role of the noncanonical Walker A motif in the functionality of AAA+ ATPases has not been explored yet. To determine functional effects of introduction of Asn into the Walker A sequence, we replaced the Walker‐A Thr with Asn in ClpB, a bacterial AAA+ chaperone which reactivates aggregated proteins. We found that the T‐to‐N mutation in Walker A partially inhibited the ATPase activity of ClpB, but did not affect the ClpB capability to associate into hexamers. Interestingly, the noncanonical Walker A sequence in ClpB induced preferential binding of ADP vs. ATP and uncoupled the linkage between the ATP‐bound conformation and the high‐affinity binding to protein aggregates. As a consequence, ClpB with the noncanonical Walker A sequence showed a low chaperone activity in vitro and in vivo. Our results demonstrate a novel role of the Walker‐A Thr in sensing the nucleotide's γ‐phosphate and in maintaining an allosteric linkage between the P‐loop and the aggregate binding site of ClpB. We postulate that AAA+ ATPases with the noncanonical Walker A might utilize distinct mechanisms to couple the ATPase cycle with their substrate‐remodeling activity. 相似文献
19.
The Drosophila genome contains four low molecular weight-protein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase. 相似文献
20.
Albenne C Skov LK Tran V Gajhede M Monsan P Remaud-Siméon M André-Leroux G 《Proteins》2007,66(1):118-126
Amylosucrase from Neisseria polysaccharea (AS) is a transglucosidase from the glycoside-hydrolase family 13 that catalyzes the synthesis of an amylose-like polymer from sucrose, without any primer. Its affinity towards glycogen is particularly noteworthy since glycogen is the best D-glucosyl unit acceptor and the most efficient activator (98-fold k(cat) increase) known for this enzyme. Glycogen-enzyme interactions were modeled starting from the crystallographic AS: maltoheptaose complex, where two key oligosaccharide binding sites, OB1 and OB2, were identified. Two maltoheptaose molecules were connected by an alpha-1,6 branch by molecular modeling to mimic a glycogen branching. Among the various docking positions obtained, four models were chosen based on geometry and energy criteria. Robotics calculations enabled us to describe a back and forth motion of a hairpin loop of the AS specific B'-domain, a movement that assists the elongation of glycogen branches. Modeling data combined with site-directed mutagenesis experiments revealed that the OB2 surface site provides an anchoring platform at the enzyme surface to capture the polymer and direct the branches towards the OB1 acceptor site for elongation. On the basis of the data obtained, a semiprocessive glycogen elongation mechanism can be proposed. 相似文献