首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
BAP1 is an apurinic/apyrimidinic lyase (AP lyase) that plays an important role in the repair of DNA damage. The present study deals with the prediction of the 3D structure of bovine AP lyase based on its sequence homology with human AP lyase. The predicted 3D model of bovine AP1 shows remarkable similarity with human endonuclease in the overall 3D fold. However, significant differences in the model and the X-ray structure were located at some of the important sites. We have analyzed the active center of the enzyme and other sites that are involved in DNA repair. A number of amino acids bind the bases located in the major/minor grooves of DNA. An insertion of Arg176 in the major groove and Met270 in the minor groove caps the DNA bound enzyme's active site, stabilizing the extra helical AP site conformation and effectively locking the protein onto the AP-DNA. Three BAP1 mutants were also modeled and analyzed as regards the changes in the structure. Substitution of Arg176-->Ala leads to the loss of DNA binding whereas mutation of Asp282-->Ala and His308-->Asn leads to a decrease in the enzymatic activity.  相似文献   

15.
Ionizing radiation induces clustered DNA damage sites, whereby two or more individual DNA lesions are formed within one or two helical turns of DNA by a single radiation track. A subset of DNA clustered damage sites exist in which the lesions are located in tandem on the same DNA strand. Recent studies have established that two closely opposed lesions impair the repair machinery of the cell, but few studies have investigated the processing of tandem lesions. In this study, synthetic double-stranded oligonucleotides were synthesized to contain 8-oxoA and an AP site in tandem, separated by up to four bases in either a 5' or 3' orientation. The influence 8-oxoA has on the incision of the AP site by the E. coli glycosylases Fpg and Nth protein and the human AP endonuclease HAP1 was assessed. 8-OxoA has little or no effect on the efficiency of incision of the AP site by Nth protein; however, the efficiency of incision of the AP site by Fpg protein is reduced in the presence of 8-oxoA even up to a four-base separation in both the 5' and 3' orientations. 8-OxoA influences the efficiency of HAP1 incision of the AP site only when it is 3' to the AP site and separated by up to two bases. This study demonstrates that the initial stages of base excision repair can be impaired by the presence of a second base lesion in proximity to an AP site on the same DNA strand. This impairment could have biological consequences, such as mutation induction, if the AP site is present at replication.  相似文献   

16.
DNA damage and repair is a fundamental process that plays an important role in cancer treatment. Base excision repair (BER) is a major repair pathway that often leads to drug resistance in DNA-targeted cancer chemotherapy. In order to measure BER, we have developed a near infrared (NIR) fluorescent probe. This probe binds to a key intermediate, termed apurinic/apyrimidinic (AP) site, in the BER pathway where DNA damage and repair occurs. We have developed an assay to show the efficacy of the probe binding to AP sites and have shown that it can distinguish AP sites in DNA extract from chemotherapy treated cells. This probe has potential application in monitoring patient response to chemotherapy and evaluating new drugs in development.  相似文献   

17.
18.
19.
Naturally occurring polymorphisms in the protease of human immunodeficiency virus type 1 (HIV-1) subtype C would be expected to lead to adaptive (compensatory) changes in protease cleavage sites. To test this hypothesis, we examined the prevalences and patterns of cleavage site polymorphisms in the Gag, Gag-Pol, and Nef cleavage sites of C compared to those in non-C subtypes. Codon-based maximum-likelihood methods were used to assess the natural selection and evolutionary history of individual cleavage sites. Seven cleavage sites (p17/p24, p24/p2, NC/p1, NC/TFP, PR/RT, RT/p66, and p66/IN) were well conserved over time and in all HIV-1 subtypes. One site (p1/p6(gag)) exhibited moderate variation, and four sites (p2/NC, TFP/p6(pol), p6(pol)/PR, and Nef) were highly variable, both within and between subtypes. Three of the variable sites are known to be major determinants of polyprotein processing and virion production. P2/NC controls the rate and order of cleavage, p6(gag) is an important phosphoprotein required for virion release, and TFP/p6(pol), a novel cleavage site in the transframe domain, influences the specificity of Gag-Pol processing and the activation of protease. Overall, 58.3% of the 12 HIV-1 cleavage sites were significantly more diverse in C than in B viruses. When analyzed as a single concatenated fragment of 360 bp, 96.0% of group M cleavage site sequences fell into subtype-specific phylogenetic clusters, suggesting that they coevolved with the virus. Natural variation at C cleavage sites may play an important role, not only in regulation of the viral cycle but also in disease progression and response to therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号