首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
I V Fedorova 《Genetika》1978,14(11):1884-1891
The method of repeated irradiation allowed to study kinetics of excision of mono-adducts induced by 8-methoxypsoralen (8-MOP) plus light (lambda=365 nm) in DNA of UV-sensitive mutants rad4 and rad15 and X-ray sensitive mutants rad54, xrs2, xrs4. The survival of the mutant rad4 was not practically increased after incubation in complete liquid medium for 3 hours at 28 degrees C before the repeated irradiation. These data suggest that the mutant rad4 is characterized by nearly complete absence of the mono-adduct excision. The survival of mutants rad15 and rad54 in the same environment was increased less effectively than the survival of the control radioresistant strain, but the mutants xrs2 and xrs4 did not differ from the control strain. Possible causes of differences in survival between radiosensitive strains are discussed. The increased sensitivity of the excision defective strain (rad4) and of the postreplicative recombination defective strains (xrs2, xrs4, rad54) to the lethal effect of 8-MOP plus light (lambda=365 nm) suggests that two systems of reparation take part in the removal of photoproducts induced by 8-MOP in DNA of yeast cells.  相似文献   

2.
Excision of interstrand DNA cross-links induced by 4,5',8-trimethyl psoralen plus 360-nm light was examined in wild type (RAD+) and various radiation-sensitive (rad) mutants of Saccharomyces cerevisiae known to be defective in the excision of UV light-induced pyrimidine dimers. Alkaline sucrose sedimentation of DNA after incubation of psoralen-plus-light-treated cells indicated little or no nicking of cross-linked DNA in rad1-2, rad2-5, rad3-2, rad4-4, rad10-2, and mms19-1 mutants. In the rad14-2 mutant, substantial nicking was observed but to a much lesser extent than in the RAD+ strains, whereas the rad16-1 mutant was as proficient in nicking as the RAD+ strain. Removal of cross-links was also examined in RAD+, rad3-2, and rad14-2 strains by determining the sensitivity of alkali-denatured and -neutralized DNA to hydrolysis by S1 nuclease. No cross-link removal was observed in the rad3-2 mutants, and the rad14-2 mutant was much less efficient than the RAD+ strain in removing cross-links.  相似文献   

3.
A semipermissive growth condition was defined for a Schizosaccharomyces pombe strain carrying a thermosensitive allele of DNA polymerase delta (pol delta ts03). Under this condition, DNA polymerase delta is semidisabled and causes a delay in S-phase progression. Using a genetic strategy, we have isolated a panel of mutants that enter premature mitosis when DNA replication is incomplete but which are not defective for arrest in G2/M following DNA damage. We characterized the aya14 mutant, which enters premature mitosis when S phase is arrested by genetic or chemical means. However, this mutant is sensitive to neither UV nor gamma irradiation. Two genomic clones, rad26+ and cds1+, were found to suppress the hydroxyurea sensitivity of the aya14 mutant. Genetic analysis indicates that aya14 is a novel allele of the cell cycle checkpoint gene rad26+, which we have named rad26.a14. cds1+ is a suppressor which suppresses the S-phase feedback control defect of rad26.a14 when S phase is inhibited by either hydroxyurea or cdc22, but it does not suppress the defect when S phase is arrested by a mutant DNA polymerase. Analyses of rad26.a14 in a variety of cdc mutant backgrounds indicate that strains containing rad26.a14 bypass S-phase arrest but not G1 or late S/G2 arrest. A model of how Rad26 monitors S-phase progression to maintain the dependency of cell cycle events and coordinates with other rad/hus checkpoint gene products in responding to radiation damage is proposed.  相似文献   

4.
Wu X  Braithwaite E  Wang Z 《Biochemistry》1999,38(9):2628-2635
Excision repair of DNA is an important cellular response to DNA damage induced by radiation and many chemicals. In eukaryotes, base excision repair (BER) and nucleotide excision repair (NER) are two major excision repair pathways which are completed by a DNA ligation step. Using a cell-free system, we have determined the DNA ligase requirement during BER and NER of the yeast S. cerevisiae. Under nonpermissive conditions in extracts of the cdc9-2 temperature-sensitive mutant, DNA ligation in both BER and NER pathways was defective, and the repair patches were enlarged. At the permissive temperature (23 degrees C), DNA ligation during excision repair was only partially functional in the mutant extracts. In contrast, deleting the DNA ligase IV gene did not affect DNA ligation of BER or NER. Defective DNA ligation of BER and NER in cdc9-2 mutant extracts was complemented in vitro by purified yeast Cdc9 protein, but not by DNA ligase IV even when overexpressed. These results demonstrate that the ligation step of excision repair in yeast cell-free extracts is catalyzed specifically by the Cdc9 protein, the homologue of mammalian DNA ligase I.  相似文献   

5.
We have examined the role of the uvrC gene in UV excision repair by studying incision, excision, repair synthesis, and DNA strand reformation in Escherichia coli mutants made permeable to nucleoside triphosphates by toluene treatment. After irradiation, incisions occur normally in uvrC cells in the presence of nicotinamide mononucleotide (NMN), a ligase-blocking agent, but cannot be detected otherwise. We conclude that repair incisions are followed by a ligation event in uvrC mutants, masking incision. However, a uvrC polA12 mutant accumulates incisions only slightly less efficiently than a polA12 strain without NMN. Excision of pyrimidine dimers is defective in uvrC mutants (polA(+) or polA12) irrespective of the presence or absence of NMN. DNA polymerase I-dependent, NMN-stimulated repair synthesis, which is demonstrable in wild-type cells, is absent in uvrC polA(+) cells, but the uvrC polA12 mutant exhibits a UV-specific, ATP-dependent repair synthesis like parental polA12 strains. A DNA polymerase I-mediated reformation of high-molecular-weight DNA takes place efficiently in uvrC polA(+) mutants after incision accumulation, and the uvrC polA12 mutant shows more reformation than the polA12 strain after incision. These results indicate that normal incision occurs in uvrC mutants, but there appears to be a defect in the excision of pyrimidine dimers, allowing resealing via ligation at the site of the incision. The lack of NMN-stimulated repair synthesis in uvrC polA(+) cells indicates that incision is not the only requirement for repair synthesis.  相似文献   

6.
The cell-cycle specific mutation cdc40-1, which has been previously shown to be sensitive to MMS at the restrictive temperature, was further characterized as a DNA-repair-deficient mutation. cdc40-1 mutants shown only slight sensitivity to UV irradiation. Double mutant studies shown that rad6-l is epistatic to cdc40-1 with respect to sensitivity to UV irradiation and MMS. rad50-1 is epistatic to cdc40-1 with respect to MMS sensitivity in G1 stationary cells, but not in logarithmic cultures. An additive effect is seen between cdc40-1 and rad50-1 with respect to UV irradiation. cdc40-1 mutants are defective in UV-induced mutagenesis at the restrictive temperature. UV-induced levels of recombination are normal at both temperatures, while MMS-induced recombination is enhanced at the restrictive temperature.  相似文献   

7.
A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD+ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.  相似文献   

8.
The bifunctional alkylating anticancer drug nitrogen mustard forms a variety of DNA lesions, including monoadducts and intrastrand and interstrand crosslinks. Although it is known that nucleotide excision repair (NER) is important in processing these adducts, the role of the other principal excision repair pathway, base excision repair (BER) is less well defined. Using isogenic Saccharomyces cerevisiae strains disrupted for a variety of NER and BER genes we have examined the relative importance of the two pathways in the repair of nitrogen mustard adducts. As expected, NER defective cells (rad4 and rad14 strains) are extremely sensitive to the drug. One of the BER mutants, a 3-methyladenine glycosylase defective (mag1) strain also shows significant hypersensitivity. Using a rad4/mag1 double mutant it is shown that the two excision repair pathways are epistatic to each other for nitrogen mustard sensitivity. Furthermore, both rad14 and mag1 disruptants show elevated levels of nitrogen mustard-induced forward mutation. Measurements of repair rates of nitrogen mustard N-alkylpurine adducts in the highly transcribed RPB2 gene demonstrate defects in the processing of mono-adducts in rad4, rad14 and mag1 strains. However, there are differences in the kinetics of adduct removal in the NER mutants compared to the mag1 strain. In the mag1 strain significant repair occurs within 1 h with evidence of enhanced repair on the transcribed strand. Adducts however accumulate at later times in this strain. In contrast, in the NER mutants repair is only evident at times greater than 1 h. In a mag1/rad4 double mutant damage accumulates with no evidence of repair. Comparison of the rates of repair in this gene with those in a different genomic region indicate that the contributions of NER and BER to the repair of nitrogen mustard adducts may not be the same genome wide.  相似文献   

9.
Excision repair defects of Saccharomyces cerevisiae rad1-1, rad4-4, rad7-1 and rad14 mutants were examined. As previously found, transformation of such cells with UV-irradiated plasmid DNA is poor compared to wild-type yeast. Treatment of UV-irradiated YRp12 plasmid DNA with crude preparations of Micrococcus luteus UV endonuclease before introducing it into rad1-1 cells increased transformation efficiency to wild-type levels. This is consistent with earlier reports of rad1-1 mutants being defective in the incision step of excision repair. However, with purified UV endonuclease little or no rescue occurred when the UV-irradiated plasmid was incised before transformation into rad1-1 or rad4-4 cells. Furthermore, the purified UV endonuclease reduced transformation of rad7-1 and rad14 mutants to levels seen in rad1-1 and rad4-4 cells. In contrast such treatment caused only a small decrease in the transforming ability of UV-irradiated DNA in wild-type cells. These results show that yeast can normally process pre-incised, UV-irradiated DNA and that this activity is absent in rad1-1, rad4-4, rad7-1 and rad14 mutants. Thus, in addition to their previously reported roles in incision, the RAD1, 4, 7 and 14 gene products are also required for repair to continue after the incision of DNA lesions.  相似文献   

10.
The ability to remove ultraviolet (UV)-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 UV-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.  相似文献   

11.
We have observed the enzymatic production of deoxyribonucleic acid (DNA) doublestrand breaks in Escherichia coli K12 after ultraviolet irradiation. Doublestrand breaks appeared in wild-type, polA1, recB21, recA, and exrA strains after incubation in minimal medium. THE UVRA6 strain showed no evidence of double-strand breakage under the same conditions. Our data suggest that uvr+ cells, which are proficient in the incision step of excision repair, accumulate double-strand breaks in their DNA as a result of the excision repair process, i.e., arising from closely matched incisions, excision gaps, or incisions and gaps on opposite strands of the DNA twin helix. Furthermore, strains deficient in excision repair subsequent to the incision step (i.e., polA, rec, exrA) showed more double-strand breaks than the wild type strain. The results raise the possibility that a significant fraction of the lethal events in ultraviolet-irradiated, repair-proficient (uvr+) cell may be enzymatically-induced DNA double-strand breaks.  相似文献   

12.
A genetic system designed to monitor recombination and sporulation in various repair-deficient yeast strains was constructed. Variously heterozygous at seven or eight sites distributed across the genome, the system facilitated sensitive detection of changes in frequency or pattern of meiotic recombination. Ten rad mutants sensitive primarily to UV-irradiation and without terminal blocks in the sporulation process were studied. Seven were defective in excision repair (rad1, rad2, rad3, rad4, rad10, rad14 and rad16), and three were defective in mutagenic repair (rad5, rad9 and rad18). Individually, each mutant displayed behavior consistent with an orthodox meiosis including a wild-type meiotic recombination profile with respect to gene conversion, PMS and intergenic map distances. Accordingly, we conclude that these mutants are without major effect on meiotic heteroduplex formation or correction. However, certain combinations of excision-defective mutants with rad18 exhibited marked ascosporal inviability. Tetraploids homozygous for rad1 and rad18 produce a large proportion of diploid spores containing a recessive lethal.  相似文献   

13.
Haploid wild-type and mutant cells of Saccharomyces carrying one of the single genes rad2-20 or rad9-4 and the double mutant rad2-20rad9-4 were tested for their response to a treatment with 8-methoxypsoralen plus 365 nm light using immediate and delayed plating techniques. The mutant defective in the excision of ultraviolet-induced pyrimidine dimers (rad2-20) as well as that presumably deficient in a recombinational repair system (rad9-4) are more sensitive than wild type cells. The double mutant (rad2-20rad9-4) demonstrates a higher sensitivity than each of the single mutants, indicating that at least two pathways are involved in the repair of the 8-methoxypsoralen plus 365 nm induced damages. In all cases survival curves have shoulders. The survival of wild type and rad9-4 cells is increased after dark holding whereas it remains constant for the rad2-20 mutant and for the double mutant. These results show that the induced damages are reparable. Respiratory deficient mutant (p-) were compared to the corresponding respiratory competent cells. It is shown that the respiratory function is required for the expression of the excision repair activity. The 8-methoxypsoralen plus 365 nm ligh treatment appears to be less effective than ultraviolet irradiation (254 nm) in the induction of the cytoplasmic 'petite' mutation at the same survival levels.  相似文献   

14.
15.
We have identified a novel human gene by virtue of its ability to complement the rad1-1 checkpoint mutant of Schizosaccharomyces pombe. This gene, called RACH2, rescues the temperature-sensitive lethality of a rad1-1 wee1-50 double mutant of S. pombe. Expression of RACH2 in S. pombe rad1-1 strains partially restores UV resistance to the rad1-1 mutant strain. Expression of RACH2 in a rad1-1 cdc25-22 double mutant partially restores the dose-dependent delay in mitotic entry after irradiation that is lost in rad1-1 checkpoint-deficient mutants. Overexpression of RACH2 in human tissue culture cells induces apoptosis.  相似文献   

16.
In temperature-sensitive (ts) mutants of mouse FM3A cells, the levels of mutagenesis and survival of cells treated with DNA-damaging agents have been difficult to assess because they are killed after their mutant phenotypes are expressed at the nonpermissive temperature. To avoid this difficulty, we incubated the ts mutant cells at the restrictive temperature, 39 degrees C, for only a limited period after inducing DNA damage. We used ts mutants defective in genes for ubiquitin-activating enzyme (E1), DNA polymerase alpha, and p34(cdc2) kinase. Whereas the latter two showed no effect, E1 mutants were sensitized remarkably to UV light if incubated at 39 degrees C for limited periods after UV exposure. Eighty-five percent of the sensitization occurred within the first 12 h of incubation at 39 degrees C, and more than 36 h at 39 degrees C did not produce any further sensitization. Moreover, while the 39 degrees C incubation gave E1 mutants a moderate spontaneous mutator phenotype, the same treatment significantly diminished the level of UV-induced 6-thioguanine resistance mutagenesis and extended the time necessary for expression of the mutation phenotype. These characteristics of E1 mutants are reminiscent of the defective DNA repair phenotypes of Saccharomyces cerevisiae rad6 mutants, which have defects in a ubiquitin-conjugating enzyme (E2), to which E1 is known to transfer ubiquitin. These results demonstrate the involvement of E1 in eukaryotic DNA repair and mutagenesis and provide the first direct evidence that the ubiquitin-conjugation system contributes to DNA repair in mammalian cells.  相似文献   

17.
Summary The cell cycle mutant, cdc9, in the yeast Saccharomyces cerevisiae is defective in DNA ligase be deficient in the repair of DNA damaged by methyl methane sulphonate. On the other hand survival of cdc9 after irradiation by -rays is little diferent from that of the wild-type, even after a period of stress at the restrictive temperature. The mutant cdc9 is not allelic with any known rad or mms mutants.  相似文献   

18.
Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The increase in chromosome loss and/or recombination is likely to be due to the deficiency of functional gene product rather than to an aberrant function of the mutant gene product since the mutant alleles are, with one exception, recessive to the wild-type allele for this phenotype. The generality of this result suggests that a delay in almost any stage of chromosome replication or segregation leads to a decrease in the fidelity of mitotic chromosome transmission. In contrast, temperature-sensitive mutants defective in the control step of the cell cycle (cdc28), in cytokinesis (cdc3) or in protein synthesis (ils1) did not exhibit increased recombination or chromosome loss.--Based upon previous results with mutants and DNA-damaging agents in a variety of organisms, we suggest that the induction of mitotic recombination in certain mutants is due to the action of a repair pathway upon nicks or gaps left in the DNA. This interpretation is supported by the fact that the induced recombination is dependent upon the RAD52 gene product, as essential component in the recombinogenic DNA repair pathway. Gene products whose deficiency leads to induced recombination are, therefore, strong candidates for proteins that function in DNA metabolism. Among the mutants that induce recombination are those known to be defective in some aspect of DNA replication (cdc2, 6, 8, 9) as well as some mutants defective in the G2 (cdc13 and 17) and M (cdc5 and 14) phases of the mitotic cycle. We suggest that special aspects of DNA metabolism may be occurring in G2 and M in order to prepare the chromosomes for proper segregation.  相似文献   

19.
A panel screening using cdc mutants of Schizosaccharomyces pombe identified radicicol as a potent growth inhibitor of certain mutants at the permissive temperature. The strains sensitive to radicicol were cdc7, cdc11, and cdc14, all of which are defective in early septum formation. Cytokinesis but not nuclear division of these mutants was inhibited by radicicol, but that of cells with the wild-type background was not. A biologically active derivative of radicicol with a biotin moiety at the C-11 position bound Swo1, an Hsp90 homologue in S. pombe. Increased Swo1 expression partially suppressed radicicol sensitivity of cdc14 and almost completely rescued morphological abnormalities in cdc14 and cdc7 cells induced by radicicol at the permissive temperature. On the other hand, the increased Swo1 expression did not restore septum formation at the nonpermissive temperature. These results suggest that Swo1, as a molecular chaperone, plays a role in stabilizing these temperature-sensitive proteins at the permissive temperature or in activating the cytokinesis signaling cascade.  相似文献   

20.
In Saccharomyces cerevisiae, inactivation of the two DNA N-glycosylases Ntg1p and Ntg2p does not result in a spontaneous mutator phenotype, whereas simultaneous inactivation of Ntglp, Ntg2p and Radlp or Rad14p, both of which are involved in nucleotide excision repair (NER), does. The triple mutants rad1 ntg1 ntg2 and rad14 ntg1 ntg2 show 15- and 22-fold increases, respectively, in spontaneous forward mutation to canavanine resistance (CanR) relative to the wild-type strain (WT). In contrast, neither of these triple mutants shows an increase in the incidence of Lys+ revertants of the lys1-1 ochre allele. Furthermore, the rad1 ntg1 ntg2 mutant is hypersensitive to the lethal effect of H2O2 relative to WT, rad1 and ntg1 ntg2 mutant strains. Moreover, the rad1 ntg1 ntg2 strain is hypermutable (CanR and Lys+) upon exposure to H2O2, relative to WT, rad1 and ntg1 ntg2 strains. Mutagen sensitivity and enhanced mutagenesis in the rad1 ntg1 ntg2 triple mutant, relative to the other strains tested, were also observed upon exposure to oxidizing agents such as tertbutylhydroperoxide and menadione. In contrast, the sensitivity of the rad1 ntg1 ntg2 triple mutant to gamma-irradiation does not differ from that of the WT. However, the triple mutant shows an increase in the frequency of Lys+ revertants recovered after gamma-irradiation. The results reported in this study demonstrate that base excision repair (BER) mediated by Ntglp and Ntg2p acts synergistically with NER to repair endogenous or induced lethal and mutagenic oxidative DNA damage in yeast. The substrate specificity of Ntg1 p and Ntg2p, and the spectrum of lesions induced by the DNA-damaging agents used, strongly suggest that oxidized DNA bases, presumably oxidized pyrimidines, represent the major targets of this repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号