首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

2.
To elicit a therapeutic antitumor immune response, dendritic cells (DCs) have been employed as a cellular adjuvant. Among various DC-based approaches, fusion of DCs and tumor cells potentially confers not only DC functionality, but also a continuous source of unaltered tumor antigens. We have recently demonstrated successful generation of fusion hybrids by a large-scale electrofusion technique. The immunogenicity and therapeutic potential of fusion hybrids were further analyzed in a model system of a murine melanoma cell line expressing beta-galactosidase (beta-gal) as a surrogate tumor antigen. A single vaccination with fusion hybrids plus IL-12 induced a therapeutic immune response against 3-day established pulmonary metastases. This immunotherapy was beta-gal specific and involved both CD4 and CD8 T cells. In vitro, fusion hybrids stimulated specific IFN-gamma secretion from both CD4 and CD8 immune T cells. They also nonspecifically induced IL-10 secretion from CD4 but not CD8 T cells. Compared to other DC loadings, our results demonstrate the superior immunogenicity of fusion. The current technique of electrofusion is adequately developed for clinical use in cancer immunotherapy.  相似文献   

3.
Based on several previous studies indicating that transfection of genomic DNA can stably alter the character of the cells that take up the exogenous DNA, we investigated antitumor immunity conferred by fusions of syngeneic dendritic cells (DCs) and allogeneic fibroblasts (NIH3T3) transfected with genomic DNA from B16 tumor cells. Fusion cells (FCs) composed of dendritic and genetically engineered NIH3T3 cells were prepared with polyethylene glycol, and fusion efficiency was 30.3%. Prior immunization with FCs prevented tumor formation upon challenge with B16 tumor cells. Efficacy was reduced when studies were performed in mice depleted of NK cells. Vaccination with FCs containing DCs and fibroblasts transfected with denatured DNA did not inhibit tumor growth. Cytotoxic T cell (CTL) activity of spleen cells from immunized mice against both Yac-1 and tumor cells was also stimulated by administration of FCs compared with the activity observed for cells obtained from naïve mice. These data demonstrate the therapeutic efficacy of fusion cell–based vaccine therapy using syngeneic DCs and allogeneic fibroblasts transfected with tumor-derived genomic DNA.  相似文献   

4.
Introduction  Suppression of dendritic cells (DCs) is a crucial mechanism by which tumor cells escape immune recognition and elimination. We have recently reported that MHC class I antigen processing machinery (APM) component expression in human DCs is down-regulated by tumor-derived gangliosides. However, the molecular mechanisms underlying this abnormality were not identified. Thus, the aim of this work was to analyze the role of interferon regulatory factor 8 (IRF-8) in APM protein expression and the antigen presenting capacity of DCs developed in the tumor microenvironment. Results  We demonstrate that the expression of several MHC class I APM components, including delta, MB-1, LMP-10, ERp57, and tapasin, is significantly decreased in murine DCs generated in the presence of prostate cancer cells. APM component down-regulation was associated with decreased ability of DCs to present model antigen to antigen-specific T cells. Notable, impaired antigen-presenting activity of DCs co-cultured with tumor cells was accompanied by decreased levels of IRF-8. Transduction of DCs with the silencing RNA for the IRF-8 gene also led to reduced expression of APM components in DCs and decreased antigen presenting function. Conclusion  Together, our data suggest that tumor-induced inhibition of antigen processing and presenting function of DCs is mediated by IRF-8, a member of the interferon regulatory factor family. These results provide a new molecular target for optimizing the generation of efficient DC vaccines for cancer therapy.  相似文献   

5.
Malignant glioma of the CNS is a tumor with a very bad prognosis. Development of adjuvant immunotherapy is hampered by interindividual and intratumoral antigenic heterogeneity of gliomas. To evaluate feasibility of tumor vaccination with (autologous) tumor cells, we have studied uptake of tumor cell lysates by dendritic cells (DCs), and the T-cell stimulatory capacity of the loaded DCs. DCs are professional antigen-presenting cells, which have already been used as natural adjuvants to initiate immune responses in human cancer. An efficacious uptake of tumor cell proteins, followed by processing and presentation of tumor-associated antigens by the DCs, is indeed one of the prerequisites for a potent and specific stimulation of T lymphocytes. Human monocytes were differentiated in vitro to immature DCs, and these were loaded with FITC-labeled tumor cell proteins. Uptake of the tumor cell proteins and presentation of antigens in the context of both MHC class I and II could be demonstrated using FACS analysis and confocal microscopy. After further maturation, the loaded DCs had the capacity to induce specific T-cell cytotoxic activity against tumor cells. We conclude that DCs loaded with crude tumor lysate are efficacious antigen-presenting cells able to initiate a T-cell response against malignant glioma tumor cells.  相似文献   

6.
Dendritic cells presenting tumor antigen   总被引:13,自引:0,他引:13  
 Since the first identification of dendritic cells by Steinman and Cohn in 1973, progress in understanding their biology has included the development of novel methods of cell culture, recognition of critical aspects of migration and maturation, and appreciation of their major role as antigen-presenting cells (APC), and how this activity is regulated by cytokines and expression of accessory molecules. Dendritic cells are the major APC involved in the initiation of the immune response and the development of tolerance. There is considerable evidence that they can acquire antigen in the peripheral tissues and process, transport, and present it to T cells in secondary lymphoid tissue. A number of studies show that, in vitro or in vivo, antigen-pulsed dendritic cells can directly sensitize T cells and stimulate the development of antigen-specific immune responses, including both protective and therapeutic antitumor responses. In this paper, several important aspects of dendritic cell biology are discussed and a number of studies confirming the role of these professional APC in antitumor immunity are reviewed. Received: 6 August 1996 / Accepted: 20 September 1996  相似文献   

7.
Dendritic cells (DC), genetically modified to express ovalbumin by the retroviral vector GCDNsap, can elicit stronger anti-tumor immunity than those loaded with the peptides. To assess the clinical feasibility of the strategy, such DC were prepared by differentiation of hematopoietic progenitor cells transduced with the human epidermal growth factor receptor 2 (HER2). When inoculated in mice, the DC primed both HER2-specific cytotoxic T lymphocytes and type 1 T helper lymphocytes, resulting in production of HER2-specific antibody. Of importance is that the antibody mediated antibody-dependent cellular cytotoxicity and opsonization. The potent anti-tumor effects were also confirmed by results of experiments using HER2-transgenic mice. Inoculation of HER2-transduced DC resulted in longer disease-free survival of treated mice that showed significant reduction of primary and metastatic tumors. Interestingly, footpad inoculation resulted in stronger anti-tumor effects compared to subcutaneous administration and induced higher levels of the HER2-specific antibody, suggesting that an important role of humoral immunity in anti-tumor effects for malignancies with membrane-type tumor-associated antigens (TAA). Taken together, vaccination of the TAA-transduced DC may represent a promising form of therapy for breast cancers expressing HER2.  相似文献   

8.
Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-α and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.  相似文献   

9.
Dendritic cells (DC) are professional antigen-presenting cells that can be generated in vitro from CD34+ peripheral blood progenitor cells by recombinant cytokines. These cells have potential implications for immunotherapeutic approaches in the treatment of cancer and other diseases. Physiologically, immature DC in the periphery capture and process antigens, then mature to interdigitating DC and migrate to lymphoid organs, where they activate lymphocytes. However, it is not known if DC generated in vitro have the capacity to traffic in vivo to the lymphoid tissues, such as spleen and lymph nodes. We have investigated whether human radiolabeled DC differentiated in vitro migrate and localize to lymphoid tissues after intravenous and intralymphatic injection. The distribution and localization of the DC were evaluated in five patients with malignant melanoma using serial whole-body gamma camera imaging. Intravenously infused DC demonstrated transient lung uptake followed by localization in the spleen and liver for at least 7 days. DC injected into a lymphatic vessel at the dorsal foot were rapidly detected in the draining lymph nodes where they remained for more than 24 h. These data suggest that DC differentiated in vitro localize preferentially to lymphoid tissue, where they could induce specific immune responses. Received: 28 January 1999 / Accepted: 4 March 1999  相似文献   

10.
In melanoma patients, CD8+ cytotoxic T cells have been found recognizing self-proteins of which the expression is restricted to the melanocytic lineage. These melanocyte differentiation antigens are expressed in normal melanocytes as well as in 80–100% of primary and metastatic melanoma. In this report, six HLA-A*0201–subtyped metastatic melanoma patients vaccinated with dendritic cells (DCs) pulsed with autologous tumor lysates and keyhole limpet hemocyanin (KLH) were screened for the presence of CD8+ T cells specific for three HLA-A*0201–binding peptides derived from the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase. For this purpose, nonstimulated as well as in vitro peptide-stimulated peripheral blood mononuclear cells (PBMCs) were tested for peptide-specific IFN- release by enzyme-linked immunosorbent spot (ELISpot) assays. Furthermore, expression of the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase in tumor lesions was analyzed by immunohistochemistry before and after vaccination. We also used the ELISpot technique to investigate whether KLH-specific T cells were induced and whether these cells released type 1 (IFN-) and/or type 2 (IL-13) cytokines. Our data show induction of CD8+ T cells specific for the melanosomal peptides MART-1/Melan-A27–35 or tyrosinase1–9, as well as IFN-–releasing KLH-specific T cells, in two of six vaccinated melanoma patients, but do not support an association between the induction of these T cells and clinical responses.  相似文献   

11.
There has been a recent interest in using IL-15 to enhance antitumor activity in several models because of its ability to stimulate CD8+ T cell expansion, inhibit apoptosis and promote memory T cell survival and maintenance. Previously, we reported that C6VL tumor lysate-pulsed dendritic cell vaccines significantly enhanced the survival of tumor-bearing mice by stimulating a potent tumor-specific CD8+ T cell response. In this study, we determined whether IL-15 used as immunologic adjuvant would augment vaccine-primed CD8+ T cell immunity against C6VL and further improve the survival of tumor-bearing mice. We report that IL-15 given after C6VL lysate-pulsed dendritic cell vaccines stimulated local and systemic expansion of NK, NKT and CD8+ CD44hi T cells. IL-15 did not, however, augment innate or cellular responses against the tumor. T cells from mice infused with IL-15 following vaccination did not secrete increased levels of tumor-specific TNF-α or IFN-γ or have enhanced C6VL-specific CTL activity compared to T cells from recipients of the vaccine alone. Lastly, IL-15 did not enhance the survival of tumor-bearing vaccinated mice. Thus, while activated- and memory-phenotype CD8+ T cells were dramatically expanded by IL-15 infusion, vaccine-primed CD8+ T cell specific for C6VL were not significantly expanded. This is the first account of using IL-15 as an adjuvant in a therapeutic model of active immunotherapy where there was not a preexisting pool of tumor-specific CD8+ T cells. Our results contrast the recent studies where IL-15 was successfully used to augment tumor-reactivity of adoptively transferred transgenic CD8+ T cells. This suggests that the adjuvant potential of IL-15 may be greatest in settings where it can augment the number and activity of preexisting tumor-specific CD8+ T cells.  相似文献   

12.
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.  相似文献   

13.
We have developed immuno-gene therapy for malignant melanoma and prostate cancer. The therapy is based on monocyte-derived dendritic cells (DCs) that are transfected with autologous melanoma-mRNA or mRNA from three prostate cancer cell lines (DU-145, LN-CaP and PC-3). A broad spectrum of tumour-associated antigens will be included in both DC-vaccines. The use of autologous melanoma-mRNA moreover allows targeting of individual tumour antigens that are specific to each patient. Effective protocols have been established for mRNA-transfection by square wave electroporation and for the generation of clinical grade DCs. A full scale preclinical evaluation demonstrated in vitro T cell responses in 6/6 advanced melanoma patients. The responses were specific to antigens encoded by the transfected tumour-mRNA. Recently, we have conducted two phase I/II trials, in advanced malignant melanoma and androgen-resistant prostate cancer. Successful vaccine preparations were obtained for all 41 patients elected. No serious adverse effects were observed. Specific T cell responses (T cell proliferation and/or IFNγ ELISPOT) were demonstrated in 9/19 evaluable melanoma patients and in 12/19 prostate cancer patients. The response rates were higher for patients receiving intradermal vaccination, compared to intranodal injection. Thirteen prostate cancer patients developed a decrease in log-slope PSA. The PSA-response was significantly related to the T cell response (P=0.002). We conclude that the DC-vaccine is feasible and safe, and that T cell responses are elicited in about 50% of patients.This article is a symposium paper from the Annual Meeting of the “International Society for Cell and Gene Therapy of Cancer”, held in Shenzhen, China, on 9–11 December 2005.  相似文献   

14.
Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6−/− mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-γ. The effects of DR6 are mostly amended when these immature DC are matured with IL-1β/TNF-α, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.  相似文献   

15.
Although TLR are often studied on DC because of their ability to bridge innate and adaptive defenses, TLR are also expressed by epithelial cells. Because the majority of cancers are carcinomas, and thus of epithelial origin, we wanted to know whether a carcinoma and DC responded similarly to a TLR agonist. We found the mammary carcinoma 4T1 and CD11c+ DC both secreted proinflammatory chemokines in response to the TLR4 agonist lipopolysaccharide (LPS). However a clear dichotomy existed. DC, but not 4T1 secreted IL-1β, TNF-α, and upregulated CD80 and CD86 expression following LPS treatment. A potential reason for differential responsiveness was that DC expressed greater levels of TLR4, CD14, Myd88, and TRAM. Despite the low level of TLR signaling proteins, the carcinoma were able to elicit a range of responses contingent upon the source, dose, length, and frequency of TLR agonist treatment. Thus, carcinoma and DC are distinctly responsive to LPS.  相似文献   

16.
Intracellular Salmonella inhibit antigen presentation by dendritic cells   总被引:3,自引:0,他引:3  
Dendritic cells (DC) are important APCs linking innate and adaptive immunity. During analysis of the intracellular activities of Salmonella enterica in DC, we observed that viable bacteria suppress Ag-dependent T cell proliferation. This effect was dependent on the induction of inducible NO synthase by DC and on the function of virulence genes in Salmonella pathogenicity island 2 (SPI2). Intracellular activities of Salmonella did not affect the viability, Ag uptake, or maturation of DC, but resulted in reduced presentation of antigenic peptides by MHC class II molecules. Increased resistance to reinfection was observed after vaccination of mice with SPI2-deficient Salmonella compared with mice vaccinated with SPI2-proficient Salmonella, and this correlated with an increased amount of CD4(+) as well as CD8(+) T cells. Our study is the first example of interference of an intracellular bacterial pathogen with Ag presentation by DC. The subversion of DC functions is a novel strategy deployed by this pathogen to escape immune defense, colonize host organs, and persist in the infected host.  相似文献   

17.
Background In the present study, we have examined whether treatment of patients with metastatic melanoma with matured dendritic cell (DC) vaccines with or without low dose IL-2 may improve treatment outcomes. Methods Sixteen patients received DC vaccines (DCs) sensitized with autologous melanoma lysates and 18 patients received DCs sensitized with peptides from gp100, MART-1, tyrosinase, MAGE-3.A2, MAGE-A10 and NA17. IL-2 was given subcutaneously (sc) at 1 MU/m2 on the second day after each injection for 5–14 days in half of each group. DCs were given by intranodal injection. Results There were 2 partial responses (PR) and 3 with stable disease (SD) in the nine patients receiving DCs + peptides + IL-2, and 1 PR and 1 SD in nine patients treated with DCs + peptides without IL-2. There were only two patients with SD in the group receiving DCs + autologous lysates and no IL-2. Median overall survival for all patients was very good at 18.5 months but this was most probably due to selection of a favourable group of patients for the study. There was no significant difference in survival between the groups by log rank analysis. Treatment was not associated with significant side effects. The quality and yield of the DCs in the preparations were generally good. Conclusions We conclude that mature DC preparations may be superior to immature DC preparations for presentation of melanoma peptides and that IL-2 may increase clinical responses to the DCs plus peptides. However, in our view the low response rates do not justify the cost and complexity of this treatment approach.  相似文献   

18.
Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane.  相似文献   

19.
树突状细胞受曲霉菌抗原冲击后的变化   总被引:2,自引:0,他引:2  
目的探讨树突状细胞(DCs)在曲霉菌免疫中的作用以及曲霉菌抗原冲击对DCs功能的影响。方法小鼠骨髓制备DCs,于小鼠尾静脉接种,以3H-TdR掺入法检测DCs刺激小鼠脾脏T细胞分化能力,ELISA方法检测IFN-γ和IL-12的浓度,电镜观察DCs的形态,同时进行DCs的表型测定。结果电镜下可见DCs细胞形态不规则,表面伸展出大量树突,与曲霉菌共同培养后胞内含有大量的烟曲霉孢子,部分孢子的膜被破坏;与烟曲霉孢子共培养24h后,DCs细胞表形CD40、CD80、CD86的表达明显增高,产生IL-12p70约(700.40±93.75)pg/ml,明显高于对照组(141.96±52.06)pg/ml;烟曲霉抗原冲击DCs回输小鼠的脾脏T细胞增殖能力明显增强,体外接受烟曲霉抗原24h产生IFN-γ(1084.33±238.04)pg/ml,明显高于单纯DCs接种小鼠的脾脏T细胞(345.98±32.75)pg/ml(p<0.01)。结论DCs能吞噬并破坏加热灭活的烟曲霉孢子,并趋于成熟,抗原呈递能力增加。  相似文献   

20.
Previous studies have suggested that immunotherapy with dendritic cell (DC) vaccines may be effective in treatment of patients with AJCC stage IV melanoma. We examined this treatment in phase I/II studies in 33 patients with good performance status and low volume disease. Nineteen patients received DCs plus autologous lysates and 14 patients DCs plus peptides from the melanoma antigens MAGE-3.A2, tyrosinase, gp100, and MART-1. Keyhole limpet hemocyanin (KLH) was used as a helper protein and influenza peptide was given as a positive control. DCs were produced from adherent cells in blood lymphocytes (monocytic DCs), grown in IL-4 and GM-CSF without a maturation step. The DCs were injected into inguinal lymph nodes at weekly intervals (×4), 2 weeks (×1), and 4-weekly intervals (×2). There were 3 responses (3 partial responses) and 1 mixed response in the 19 patients treated with DCs plus autologous lysates. No responses were seen in the group treated with DCs plus peptides. Stable disease (defined as no progression over a period of 3 months) was seen in 4 patients in group 1 and 5 patients in group 2. Treatment was not associated with significant side effects. We examined whether DTH skin tests or assays of IFN- cytokine production may be useful predictors of clinical responses. Twenty-two of 30 patients had DTH responses to KLH and 12 of 13 patients had DTH responses to the influenza peptide. Five of 15 DTH responses were seen against autologous lysates. This was strongly correlated with clinical responses. Approximately half the patients had responses to MART-1 peptide and a third to the other melanoma peptides. Similarly, cytokine production assays showed responses to influenza in 7 of 13 patients, and approximately one third of patients had responses to the other peptides. No IFN- responses were seen in 5 patients against their autologous lysates. There was no correlation between assays of IFN- production and clinical responses. The present studies suggest that autologous lysates may be more effective than the melanoma peptides used in the study as the source of antigen for DC vaccines. DTH responses to autologous lysates appear useful predictors of clinical responses, but further work is needed to identify other measures associated with clinical responses.Abbreviations DC dendritic cells - DTH delayed hypersensitivity skin tests - KLH keyhole limpet hemocyanin - CTL cytotoxic T lymphocytes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号